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ABSTRACT

In this dissertation, I examine the impact of uncertainty and information pro-

cessing restrictions on standard economic models. Chapter 1 examines a reevaluation

of the excess volatility puzzle in asset prices by assessing the impact of a shift in the

agent’s focus from minimizing average loss to minimizing maximum loss. Chapters 2

and 3 extend and clarify the newly developing arena of economic models in which the

agent’s capacity for information processing is systematically limited, as in the recent

rational inattention literature.

Chapter 1, which represents joint work with Charles Whiteman, studies the

consequences changing the present value formula for stock prices. In place of the

squared-error-loss minimizing expected present value of future dividends, we use a

predictor optimal for the min-max preference relationship appropriate in cases of

ambiguity. With “robust” predictions, the well-known variance bound is reversed

in that prices are predicted to be far more volatile than what is observed. We also

investigate an intermediate “partially robust” case in which the degree of ambiguity

is limited, and discover that such an intermediate model cannot be rejected in favor

of an unrestricted time series model.

Chapter 2 demonstrates the properties and solutions for the more general

two-period rational inattention model. We show that the problem is convex, can be

solved in seconds, and highlights several important features of information-processing-

capacity-constrained models. Additionally, we show the importance of deriving,
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rather than assuming, the form of the final solution in rational inattention models.

Chapter 3 extends the work of Chapter 2 to a finite-horizon dynamic setting by

creating a structure in which distributional state and control variables interact under

information-processing constraints. Limited information processing capacity is used

optimally, and agents have the opportunity to trade processing capacity for higher

expected future income. The framework is applied to the canonical life-cycle model

of consumption and saving, and an analysis of the impact of preference parameters

on optimal attention allocation is conducted. The model produces a distinct hump-

shaped profile in expected consumption.
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On Prioritizing Information Processing

Bruno: He might get asked about Title IX.
C.J.: What are your thoughts?

Bruno: On Title IX?
C.J.: Yeah.

Bruno: I have none. I’m indifferent.
C.J.: You can’t be indifferent.

Bruno: I have to be. I have only so much RAM in my head. I have to prioritize. I
have to throw some things overboard, so, I’ve chosen, for instance, not to care

whether or not Purdue has a fencing team.

— Aaron Sorkin (“College Kids”, The West Wing)
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CHAPTER 1
ROBUSTIFYING SHILLER: DO STOCK PRICES MOVE ENOUGH
TO BE JUSTIFIED BY SUBSEQUENT CHANGES IN DIVIDENDS?

1.1 Introduction

In 1981, Shiller (1981) and LeRoy and Porter (1981) sparked a controversy

whose legacy even today continues to occupy the attention of researchers in eco-

nomics and finance. Their focus was on the simplest present value model of stock

prices: that a stock price corresponds to the expected present value of the stock’s

dividends discounted at a constant rate. Using the orthogonality property of least

squares projections (that projection errors are uncorrelated with information used

in constructing the projection), they showed that the actual present value must be

no less variable than its expectation, which according to the present value model

is the current stock price. In the data, this variance bound is violated in dramatic

fashion–stock prices are far more variable than subsequent realizations of dividend

would appear to permit.

The controversy involves why prices are so volatile–are stock prices influenced

by fads or “irrational exuberance”? Or, is something amiss with the volatility calcu-

lations, the treatment of dividends, or the assumption of a constant discount factor?

Much work has been undertaken to pursue each of these latter three resolutions of

the puzzle. For example, Flavin (1983) focussed on whether the sampling variabil-

ity in the volatility calculations could be sufficient to generate the result even when

the simple pricing model is true. Regarding dividends, Marsh and Merton (1986)
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argued that if the dividend process is difference stationary (rather than trend sta-

tionary, as Shiller had assumed), the variance bound is reversed. Time series work

suggested, however, that the trend-stationary assumption was more plausible than

the difference-stationary one (e.g. DeJong and Whiteman (1991)). Subsequent ef-

forts included development of volatility tests that loosen stationarity assumptions

(e.g., Campbell and Shiller (1987) and West (1988)).

Still, the controversy was unresolved. Perhaps if the nature of the econometric

procedures or the assumption regarding the dividend process were not the culprits, the

fault might lie with the economic environment. Indeed, the assumption of a constant

discount factor was challenged quickly by LeRoy and LaCivita (1981) and Michener

(1982), who showed that with a stochastic discount factor (the intertemporal marginal

rate of substitution) appropriate for a representative risk-averse agent, some (but alas

not enough) extra volatility would be generated in stock prices.

In 1985, the controversy morphed into the more general but closely related

“equity premium” puzzle (Mehra and Prescott (1985)): the “excessively” volatile

stock prices are associated with a return to stocks that is too much larger than the

very low return to bonds to be explained in the context of the simplest asset pricing

model unless the representative consumer is unrealistically risk averse. Hansen and

Jagannathan (1991) developed a version of Shiller’s variance bound for more general

economies which has facilitated the study of more general specifications of preferences

involving time-nonseparabilities (Constantinides (1990)) and state-nonseparabilities

(Epstein and Zin (1989)) These modifications have not resolved the controversy either
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(Otrok et al. (2002)).

We illustrate a different approach: it isn’t sampling variability in volatility

estimates, it isn’t the dividend assumption, it isn’t the discount factor, it’s the expec-

tation. We study the simplest, Shiller-style present value model, and imagine that the

predictions of future dividends are not those of a forecaster minimizing squared error

loss, but rather those of a forecaster facing and dealing with ambiguity regarding the

economic environment. That is, the forecaster admits the possibility that the correct

prediction model is unknown. To accommodate such an unpleasant but realistic sit-

uation, as much decision-theoretic literature suggests, the forecaster might behave in

such a way as to mitigate the worst outcome that could conceivably occur.

To motivate this minimax loss function, consider the following experimental

example of an agent’s aversion to uncertainty and of actions taken to minimize down-

side risk that was originally proffered in Ellsberg (1961):

Experiment 1

There are two urns, labeled UrnI and UrnII , each containing a total of

100 chips painted either black or white. The subject is allowed to examine

the contents of UrnI and discovers that it contains exactly 50 white chips

and 50 black chips. The subject is not permitted to examine UrnII other

than to be told it contains 100 chips colored either black or white, but in

an unknown ratio. The subject is given a list of four possible gambles:

(A) The chip drawn from UrnI is black.
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(B) The chip drawn from UrnI is white.

(C) The chip drawn from UrnII is black.

(D) The chip drawn from UrnII is white.

Winning a bet entitles the agent to a prize of value, for example $100.

In studies replicating this experiment, the following preference orderings over

gambles A through D have been observed: A ∼ B � C ∼ D.1 As noted by Gilboa

and Schmeidler (1989), who cite a version of this experiment in their seminal minimax

decision theory work, it is easy to see that there is no probability measure supporting

these preference orderings under expected utility maximization. Minimax decision

theory is based on the following explanation of this preference ordering: Aversion to

the uncertainty regarding the contents of UrnII causes the agent to treat the worst

case scenario among a set of possibilities as the foundation of his prior probabilities

on UrnII . Thus, the agent’s preferences represent a desire to minimize potential

downside risk.

In the present value prediction problem, this means replacing ordinary expec-

tations of future dividends with robust predictions. The standard reference for this in

the economics literature is Hansen and Sargent (2005), who for the most part employ

state space methods for calculating robust procedures. Such methods are convenient

for numerical calculations, but make analytic derivations difficult. Because the envi-

1One example of a classroom experiment in which this result is exhibited is found in
Study 1 of Fox and Tversky (1995), which used 141 undergraduates at Stanford University,
responding to a questionnaire consisting of this and several other unrelated items that
subjects completed for class credit.
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ronment is simple and we wish to illustrate the effect of robust decisions on economic

outcomes, we utilize related “frequency domain” procedures that build on Whiteman

(1985), Whiteman (1986), and Kasa (2001). As these procedures are arcane but not

deep, we present details of the derivations to make the paper self-contained. Briefly,

we exploit the robust decision-maker’s aversion to serially correlated errors to derive

the robust present value stock price analytically.

Our results indicate that robust predictions can be quite different from ordi-

nary (“least squares”) predictions, and the robust expected present value of dividends

can be quite variable–so variable, in fact, that our initial univariate calculations (ro-

bust analogues of Shiller’s) reverse the volatility relationship in dramatic fashion.

It turns out, however, that this result implies that the robust predictor is hedging

against a potential degree of model misspecification that, while possible, is extremely

unlikely.

To obtain a reasonable limitation on the degree of robustness the predictor

adopts, we employ a version of the “evil agent” game of Hansen and Sargent (2005).

In this game, the predictor uses least squares methods, but plays a dynamic game

against an evil “nature” who may deliver dividend processes different from those the

forecaster believes to characterize the data. Nature is constrained in how much noise

she can add to the situation. With this formulation, the question becomes one of how

much freedom nature would have to possess to cause the predictor agent to make

present value predictions consistent with actual stock prices, and whether this would

be implausible. Our estimates of a simple evil agent game suggest that the required
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freedom is not that great and that the other implications of the model might not be

implausible. That is, the “moderately robust” present value model generates prices

that are consistent with subsequent changes in dividends.

1.2 The Setup and the Variance Bound

Shiller (1981) begins with the simple present value model

pt = Et

∞∑
k=0

γkdt+k. (1.1)

where γ = 1/(1 + r) with r the (assumed constant) real rate of interest, pt and dt are

the real stock price and divident at time t, and Et denotes conditional expectation

given information available at t. Shiller writes the model in terms of the ex post

rational price series p∗t , which is defined as the present value of the actual subsequent

real dividends:

p∗t =
∞∑

k=0

γkdt+k. (1.2)

Clearly, as this requires us to have the actual dividend sequence out into the

infinite future, it is impossible to observe p∗t without error. Shiller notes that with

a long enough dividend sequence, we can observe an approximate p∗t by choosing a

terminal date, making some assumptions about the dividend series after that terminal

date and then constructing the p∗t series via backwards recursion using2

2The assumptions that Shiller makes about dividends after the terminal date are that
they are smooth and grow at the exponential growth rate consisten with of the original
data.
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p∗t = γ(p∗t+1 + dt+1). (1.3)

In any case, from (1.1) and (1.2), we have

pt = Et(p
∗
t ) (1.4)

which implies

p∗t = pt + εt

where εt is orthogonal to information available at time t (including pt). Then var(p∗t ) =

var(pt) + var(εt), and we have

σ(p) ≤ σ(p∗). (1.5)

That actual p is vastly more variable than measured p∗ is demonstrated in

Shiller’s Figure 1 for the SP Composite Index from 1871-1979, as replicated below.

The p∗ in the figure was generated by the backwards recursion on (1.3) and an es-

timated r = 0.048, implying γ = 0.943. For the data in the figure, the estimated

standard deviation of dividends σ(d) is 1.12 while σ(p) is 42.74 and σ(p∗) is 7.24.

Note that price volatility is about 34 times that of dividends.3

3An updated dataset has been examined and found to yield qualitatively the same results
as what is presented throughout this paper. Future work will include results with updated
data, but our results remain largely unchanged, see footnote 6 on page 38 for more details.
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Figure 1.1: Shiller’s Figure 1

1.3 The Least Squares Prediction

To provide a benchmark for the robust present value calculation to be pre-

sented below, in this section we present a first-principles derivation of the stochastic

process for stock prices implied by the present value model and the assumption that

the dividend process is stationary after detrending. This benchmark case involves

computation of the so-called “Hansen and Sargent (1980) formula”.4 The robust cal-

culation of the ensuing section is an example of the “robust Hansen-Sargent formula”

of Kasa (2001).

We will assume that the agent’s information set includes current and past

observations on a trend-stationary dividend process; in fact, we will assume that the

4A survey of these methods can be found in Whiteman (1983).
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market forecasters know that the data generating process for the detrended dividends

(i.e., the “model”) coincides with the Wold representation, which we write

dt =
∞∑

j=0

qjεt−j = q(L)εt E(εt) = 0 , E(ε2
t ) = 1 (1.6)

using the lag operator L and defining q(L) implicitly. Using (1.6) and (1.1), we have

pt = Et

∞∑
j=0

γjdt+j = Et

(
q(L)

1 − γL−1

)
εt = Et(p

∗
t ). (1.7)

The coincidence of the Wold representation and the data generation process means

that εt is both statistically and economically “fundamental” for dt. Thus (1.6) not

only represents dividends via the Wold representation, but also generates dividends:

(1.6) is the “correct” model. We defer to the next section the case in which the

representative investor is not so sure about this.

The least-squares minimization problem the representative agent faces is to find a

stochastic process pt to minimize the expected squared prediction error E(pt − p∗t )
2.

In terms of the information known at date t, the agent’s task is to find a linear com-

bination of current and past dividends, or, equivalently, of current and past dividend

innovations εt that is “close” to p∗t . Writing pt = f(L)εt, the problem becomes one of

finding the coefficients fj in f(L) = f0 +f1L+f2L
2 + ... to minimize E(f(L)εt−p∗t )

2.

Using the technique in Whiteman (1985), this problem has an equivalent, frequency-

domain representation

min
f(z)∈H2

1

2πi

∮ ∣∣∣∣ q(z)

1 − γz−1
− f(z)

∣∣∣∣
2
dz

z
(1.8)



www.manaraa.com

10

where H2 denotes the Hardy space of square-integrable analytic functions on the

unit disk, and
∮

denotes (counterclockwise) integration about the unit circle. The

requirement that f(z) ∈ H2 ensures that the forecast is causal, and contains no future

values of the ε’s. Expression (1.8) may seem exotic, but is quite simple: noting that

on the unit circle z = eiω, making the substitution and integrating with respect to ω

from 0 to 2π, the expression calls for minimizing the average value (or area under)

the spectral density of the prediction error pt − p∗t . Of course this follows from the

fact that the variance of a process is equal to the integral of its spectral density. In

the next section, we shall study a forecaster who seeks a function f(z) to minimize

not the average value on the unit circle, but the maximum value on the unit circle.

The first-order conditions for choosing fj are, for j = 0, 1, 2, ...,

∂

∂fj

[
1

2πi

∮ ∣∣∣∣ q(z)

1 − γz−1
− f(z)

∣∣∣∣
2
dz

z

]

= − 1

2πi

∮
zj

[
q(z−1)

1 − γz
− f(z−1)

]
+ z−j

[
q(z−1)

1 − γz−1
− f(z)

]
dz

z

= − 1

2πi

∮
zj

[
q(z−1)

1 − γz
− f(z−1)

]
dz

z
− 1

2πi

∮
z−j

[
q(z−1)

1 − γz−1
− f(z)

]
dz

z
= 0.(1.9)

Now change variables in the second contour integral to w = z−1, implying dw =

−1(z−2) and dz/z = −dw/w, with integration with respect to w being clockwise.

Upon changing variables in the first integral and multiplying by −1 to reverse in-

tegration back to clockwise, the the two integrals in (1.9) become identical and the

equality collapses to
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− 2

2πi

∮
z−j

[
q(z)

1 − γz−1
− f(z)

]
dz

z
= 0. (1.10)

Now define

H(z) =
q(z)

1 − γz−1
− f(z) (1.11)

so that (1.10) becomes

− 2

2πi

∮
z−jH(z)

dz

z
= 0. (1.12)

This equality requires that for j = 0, 1, 2, . . . , twice the coefficient Hj in the Laurent

expansion of H(z) valid for |z| = 1 equal zero. Multiplying by zj and summing over

all j = 0,±1,±2, ..., we find that

H(z) =
−1∑
−∞

where
∑−1

−∞ denotes an unknown function involving only negative powers of z. Then

by recalling the definition of H(z), we have

q(z−1)

1 − γz−1
− f(z) =

−1∑
j=−∞

which is known as a “Wiener-Hopf” equation. Application of the “plussing” operator

to both sides of the equation yields:5

5The plussing operator is a linear annihilator operator that means “ignore negative
powers of z.”
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[
q(z)

1 − γz−1

]
+

− [f(z)]+ = 0

implying

f(z) =

[
q(z)

1 − γz−1

]
+

=

[
zq(z)

z − γ

]
+

(1.13)

which points to the fact that f(z) is, by construction, one-sided in non-negative

powers of z. We now use a method highlighted in Appendix A of Hansen and Sargent

(1980) to determine the form of the function in (1.13). First, note that the function

being “plussed” in (1.13) is well-behaved |z| < 1 except for a single simple pole at

γ. By examining the Laurent expansion of q(z) around γ, we are able to determine

that the principle part (that is, the part of the Laurent expansion containing negative

powers of z) is P (z) = γq(γ)/(z−γ). Second, we note that “plussing” involves simply

subtracting off those parts. That is:

[A(z)]+ = A(z) − P (z)

where P (z) is the principle part of the Laurent series expansion of A(z). This implies

f(z) =

[
q(z)

1 − γz−1

]
+

=

[
zq(z)

z − γ

]
+

=
zq(z) − γq(γ)

z − γ
.

To illustrate how the formula works, suppose detrended dividends are described by a

first-order autoregression; i.e., that q(L) = (1 − ρL)−1. Then
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pt = f(L)εt =
Lq(L) − γq(γ)

L − γ
εt =

(
1

1 − ργ

)
dt.

In this simple first order case,

σ(p) =

(
1

1 − ργ

)
σ(d). (1.14)

With γ = 0.943, as estimated from the S&P data, the largest σ(p) can be for stationary

dividends (|ρ| < 1) is about 22 times the standard deviation of dividends. Estimating

ρ from the same data, the ratio is about 11, far short of the factor of 34 needed to

match the observed volatility.

It is instructive to note that while the pricing formula (1.13) makes pt the

best least squares predictor of p∗t , the prediction errors pt − p∗t will not be serially

uncorrelated. Indeed

pt − p∗t = γ

{
Lq(L) − γq(γ)

L − γ
− q(L)

1 − γL−1

}
εt

=
−γ2q(γ)

L − γ
εt = −γ2q(γ)

L−1

1 − γL−1
εt

= −γ2q(γ)
{
εt+1 + γεt+2 + γ2εt+3 + . . .

}
.

Thus the prediction errors will be described by a highly persistent (γ is close to unity)

stochastic process having a Wold representation that is a first-order autoregression.

But because this autoregression involves future εt’s, the serial correlation structure

of the errors cannot be exploited to improve the quality of the prediction of p∗t . The

reason is that the predictor “knows” the model for price setting (the present value
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formula) and the dividend process; the best predictor pt = Etp
∗
t of p∗t “tolerates” the

serial correlation because the (correct) model implies that it involves future εt’s and

therefore cannot be predicted. If one only had data on the errors (and did not know

the model that generated them), they would appear (rightly) to be characterized by

a first-order autoregression; fitting an AR(1) (i.e., the best linear model) and using

it to “adjust” pt by accounting for the serial correlation in the errors pt − p∗t would

decrease the quality of the estimate of p∗t . The reason is the usual one that the Wold

representation for pt − p∗t is not the economic model of pt − p∗t , and (correct) models

always beat Wold representations. This also serves as a reminder of circumstances

under which one should be willing to tolerate serially correlated errors: when one

knows the model that generated them, and the model implies that they are as small

as they can be made.

1.4 The Robust Prediction Case

What happens in case the individual making the prediction of future dividends does

not know for certain that dividends are generated as in (1.6)? This notion of ambiguity

was introduced in the linear, time-invariant context we are studying in the engineering

literature by Zames (1981), and has been studied more generally in the economics

literature by Gilboa and Schmeidler (1989), Hansen and Sargent (2005) and others.

In our setup, the ambiguity would be manifested in possible departures from the

moving average representation (1.6). Following the development Kasa (2001) used in

a related context, suppose the dividend process is given by
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dt = [q(L) + Δ(L)] εt (1.15)

where Δ(L)εt is a ”perturbation” of the original dividend process. Then if the fore-

caster uses (1.13), the actual squared error loss LA = E[pt − p∗t ]
2 will be given by

LA = Lq + ‖Δ(z)‖2
2 +

2

2πi

∮
Δ(z)

[
q(z)

1 − γz−1

]
−

dz

z

= Lq + ‖Δ(z)‖2
2 +

2

2πi

∮
Δ(z)

(
γq(γ)

z − γ

)
dz

z

= Lq + ‖Δ(z)‖2
2 + 2q(γ) [Δ(γ) − Δ(0)]

where Lq is the loss when dividends are indeed generated by dt = q(L)εt. The second

line follows from the linear annihilator operator [·]− which means “ignore positive

powers of z.” This leaves only the principle part of the element in the brackets,

which was shown earlier to be γq(γ)/(z − γ). The third equality is a result of the

application of Cauchy Residue Theorem. The expression for LA indicates that the

actual loss could be much larger than Lq even for a small perturbation provided q(γ)

is large. This result, combined with the knowledge that the true dividend process

is hard to come by, suggests that the forecast should be constructed with greater

robustness to model misspecification.

The problem with a misspecified model is that the “wrong” sequence of “er-

rors” εt could “excite” Δ(L) in such a way that very large prediction errors occur.

To guard against this, the predictor might wish to make forecasts that minimize the

maximum possible squared error loss rather than the average or expected squared
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error loss.

The robust predictor solves

min
f(z)∈H∞

max
|z|=1

∣∣∣∣ q(z)

1 − γz−1
− f(z)

∣∣∣∣
2

⇔ min
f(z)∈H∞

max
|z|=1

∣∣∣∣zq(z)

z − γ
− f(z)

∣∣∣∣
2

. (1.16)

Unlike in the least squares case (1.8), where f(z) was restricted to the class

H2 functions finitely square integrable on the unit circle, the restriction now is to the

class of functions with finite maximum modulus on the unit circle, and the H2 norm

has been replaced by H∞ norm.

To begin the solution process, note that there is considerable freedom in de-

signing the minimizing function f(z): it must be well-behaved (i.e., must have a

convergent power series in nonnegative powers of z on the unit disk), but is otherwise

unrestricted. Further note that zq(z)/(z − γ) can be thought of as the associated

Laurent expansion, which is of the form

zq(z)

z − γ
=

b−1

z − γ
+ b0 + b1(z − γ) + b2(z − γ)2 + ...

Intuitively, while in the least squares case f(z) is set to “cancel” all the terms of this

series except the first, here the object is to set f(z) to minimize a different function

of the prediction errors. Now define the “Blaschke factor” Bγ(z) = (z − γ)/(1 − γz)

and note that

∣∣∣∣ z − γ

1 − γz

∣∣∣∣
2

=
(z − γ)(z−1 − γ)

(1 − γz)(1 − γz−1)
=

(z − γ)z−1(1 − γz)

(1 − γz)z−1(z − γ)
= 1.
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Multiplying the objective by the Blaschke factor thus does not alter its value on the

unit circle, but the factor does cancel the pole at γ, yielding

min
{f(z)}

sup
|z|=1

∣∣∣∣ zq(z)

1 − γz
− z − γ

1 − γz
f(z)

∣∣∣∣
2

.

Defining

T (z) =
zq(z)

1 − γz
(1.17)

we have

min
f∈H∞

sup
|z|=1

|T (z) − Bγ(z)f(z)| ⇔ min
f∈H∞

‖T (z) − Bγ(z)f(z)‖∞. (1.18)

Define the function inside the ‖’s as

φ(z) = T (z) − Bγ(z)f(z) (1.19)

and note that φ(γ) = T (γ). Thus the problem of finding f(z) reduces to the problem

of finding the smallest φ(z) satisfying φ(γ) = T (γ):

min
φ∈H∞

‖φ(z)‖∞s.t. φ(γ) = T (γ)
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Theorem 1.1. (Kasa, 2001) The solution to (1.20) is the constant function φ(z) =

T (γ).

Proof. To see this, first note that the norm of a constant function is the modulus of

the constant itself. This is written as

‖φ(z)‖∞ = ‖T (γ)‖∞ = |T (γ)|2. (1.20)

Next, suppose that there exists another function Ψ(z) ∈ H∞, with Ψ(γ) = T (γ) and

also

‖Ψ(z)‖∞ < ‖φ(z)‖∞. (1.21)

Recall the definition of the L∞ norm, and using equations (1.20) and (1.21):

‖Ψ(z)‖∞ = sup
|z|=1

|Ψ(z)|2 < |T (γ)|2. (1.22)

The maximum modulus theorem states that a function f which is analytic on the

disk U achieves its maximum on the boundary of the disk. That is

sup
z∈U

|f(z)|2 ≤ sup
z∈∂U

|f(z)|2. (1.23)
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Therefore, we can see that

sup
|z|<1

|Ψ(z)|2 ≤ sup
|z|=1

|Ψ(z)|2 < |T (γ)|2. (1.24)

However, one of the values on the interior of the unit disk is z = γ, which can be

plugged in to the far LHS of equation (1.24) to get the result

|Ψ(γ)|2 ≤ sup
|z|=1

|Ψ(z)|2 < |T (γ)|2 =⇒ |Ψ(γ)|2 < |T (γ)|2. (1.25)

This contradicts the requirement that Ψ(γ) = T (γ). Therefore, we have verified

that there does not exist another function Ψ(z) ∈ H∞ such that Ψ(γ) = T (γ) and

‖Ψ(z)‖∞ < ‖φ(z)‖∞.

Now that we have a form for φ(z), we can use it to find a formula for f(z).

Recalling the form of f(z) and completing some tedious algebra, we obtain

f(z) =
T (z) − φ(z)

Bγ(z)
=

zq(z) − γq(γ)

z − γ
+

γ2

1 − γ2
q(γ)

which is the least-squares solution plus a constant. This means that after the initial

period, the impulse response function for the robust predictor is identical to that of

the least squares predictor. In the initial period, the least squares impulse response

is q(γ), while the robust impulse response is larger: q(γ)/(1−γ2). Recalling that γ is
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the discount factor, and therefore close to unity, the robust impulse response can be

considerably larger than that of the least squares response. Relatedly, the volatility

of prices in the robust case will be larger as well. For example, in the first-order

autoregressive case studied above,

pt = f(L)εt =
1

1 − ργ
dt +

γ2

(1 − γ2)(1 − ργ)
εt (1.26)

from which the variance can be calculated as

σ2(pt) =

(
1

1 − ργ

)2

σ2(dt) +
2γ2 − γ4

(1 − ργ)2(1 − γ2)2
. (1.27)

Using the data from Figure 1, and the values for σ(d), r, ρ and γ that we

have been using throughout this example, equation (1.27) gives us the result that

σ(p) = 89.52.

The standard deviation of the actual price sequence in the SP dataset is 42.74.

Thus when the agent is robust to the most misspecification possible, the resulting

price volatility will have a standard deviation over twice as high as would be needed

to exhibit the excess volatility seen in the data: the robust present value model pre-

dicts prices that are substantially more volatile than those seen in the data. The

“robust puzzle” is therefore why prices are so smooth. The reversal of the volatility

relationship is apparent in the figure below.
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Figure 1.2: Robust Price Result

1.5 The Evil Agent Game

In this section we investigate an intermediate case in which the investor-

predictor behaves robustly relative to a restricted set of possible models for dividends.

In particular, following Hansen and Sargent (2005), we consider a a game played be-

tween the predicting agent and a malicious nature in which the degree of nature’s

malevolence is restricted. This restriction comes in the form of a cost associated with

delivering excessively “noisy” dividends to the agent. The solution procedure, taken

from Whiteman (1986), requires only slight modification from the development in

sections 1.3 and 1.4.
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1.5.1 The Investing Agent’s Problem

Suppose that the dividend process investing agents perceive is written as

dt = [q(L) + m(L)] εt ≡ C(L)εt.

Thus, the investor agent’s problem becomes to choose an analytic function f(z) in

order to

min
f(z)

1

2πi

∮ ∣∣∣∣ C(z)

1 − γz−1
− f(z)

∣∣∣∣
2
dz

z
. (1.28)

As above, the optimization in equation (1.28) leads to the following Weiner-Hopf

equation:

C(z)

1 − γz−1
− f(z) =

−1∑
−∞

. (1.29)

1.5.2 The Evil Agent’s Problem

The Evil Agent’s problem in this game is to make it as difficult as possible for

the investing agent to make this prediction. However, there are restrictions on how

much power the Evil Agent (EA) has to exercise. The EA has control over m(z),

which, as seen above, is a component of the dividend process that Investing Agents
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(IA) take as given. The EA’s problem is thus to add noise to maximize the investor’s

prediction error variance subject to a penalty of θ per unit of added variance.

max
C(z)

1

2πi

∮ ∣∣∣∣ C(z)

1 − γz−1
− f(z)

∣∣∣∣
2

− θ

∣∣∣∣C(z) − q(z)

1 − γz−1

∣∣∣∣
2
dz

z
(1.30)

1.5.3 Solving the Evil Agent Game

First, we find the Weiner-Hopf equation that results from the EA’s optimiza-

tion problem.

0 =
1

2πi

∮ {
zj

1 − γz−1

[
C(z−1)

1 − γz
− f(z−1)

]
− θzj

1 − γz−1

[
C(z−1) − q(z−1)

1 − γz

]

+
z−j

1 − γz

[
C(z)

1 − γz−1
− f(z)

]
− θz−j

1 − γz

[
C(z) − q(z)

1 − γz−1

]}
dz

z
,

which implies

(1 − θ)C(z)

1 − γz
−

[
(1 − γz−1)

1 − γz
f(z)

]
+

θq(z)

1 − γz
=

−1∑
−∞

. (1.31)

We recall from (1.29) that the Investor Agent’s Weiner-Hopf equation can be written

C(z) = (1 − γz−1)f(z) +
−1∑
−∞

.

After applying the plussing operator, this leaves

C(z) =
[
(1 − γz−1)f(z)

]
+

. (1.32)
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Using (1.32) in (1.31) and applying the plussing operator again, we have

1 − θ

1 − γz

[
(1 − γz−1)f(z)

]
+
−

[
(1 − γz−1)

1 − γz
f(z)

]
+

+
θq(z)

1 − γz
= 0. (1.33)

In order to proceed, we need to solve for the “plussed” elements of equation (1.33).

The first “plussed” term is equivalent to

[
(1 − γz−1)f(z)

]
+

= f(z) − γ

[
f(z)

z

]
+

= f(z) − γ

[
f(z) − f0

z

]

= (1 − γz−1)f(z) +
γf0

z
. (1.34)

Similarly,

[
(1 − γz−1)

1 − γz
f(z)

]
+

=
(1 − γz−1)

1 − γz
f(z) +

γf0

z
. (1.35)

Using (1.34) and (1.35) in (1.33), we obtain (via somewhat length algebraic

manipulation):

f(z) =
zq(z) − γq(γ)

z − γ
+

γ2

θ − γ2
q(γ). (1.36)

It is seen from (1.36) that f(z) takes a recognizable form. The first term in f(z) is

the solution to the standard prediction problem in the event that the forecaster is

attempting to minimize MSE, rather than playing the game against an Evil Agent.



www.manaraa.com

25

Therefore, we can see that a forecaster using robust methods will end up using a

function f(z) that looks like an MSE forecast plus an extra term having to do with

what he is trying to be robust against. Note that the value of θ will control just how

large a part the second term in (1.36) will play in the forecast. Recall from (1.30)

that θ is the Lagrange multiplier on the constraint the EA faces. Changing the value

for θ is interpreted as loosening or tightening the constraint faced by the EA. As we

increase θ, we make it more costly (in terms of the trade-off within his optimization)

for the EA to add noise to the system. As we decrease θ, we make it less costly.

It turns out that there are two values for θ which make f(z) immediately

recognizable. The following relationship is clear from (1.36):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ → ∞ f(z) → MSE Result

θ ↓ 1 f(z) → H∞-norm Result

A natural question at this point would be to ask why the worst-case scenario does

not occur at θ = 0, as that is the value for θ that people naturally associate with a

non-binding constraint and therefore total freedom for the EA. The answer to this

mystery lies in the saddle-point nature of this optimization problem. The second order

conditions for finding a maximum are violated for values of θ ∈ (0, 1). Therefore, the

lower limit on θ is equal to 1.

Now that a form for f(z) has been uncovered, the next question involves the

final form of C(z), that is: what do dividends look like to the investor agent? Further,
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we would like to know how much noise is being added by the EA in equilibrium. We

pursue the form of C(z) first by recalling equations (1.32) and (1.34), which gave us

C(z) =
[
(1 − γz−1)f(z)

]
+

. (1.37)

Substituting from (1.36) into (1.37) results in another “plussing” problem:

C(z) =

[
(1 − γz−1)

{
q(z) − γz−1q(γ)

1 − γz−1

}
+ (1 − γz−1)

{
γ2

θ − γ2
q(γ)

}]
+

which when solved using the methods shown above yields

C(z) = q(z) +
γ2

θ − γ2
q(γ). (1.38)

1.5.4 Additional Noise from the Evil Agent

Now that we have the form of C(z), we can use the Cauchy Integral formula

to solve for the present value of the noise added in by the Evil Agent. We will denote

the present value of the noise by η.

η =
1

2πi

∮ ∣∣∣∣C(z) − q(z)

1 − γz−1

∣∣∣∣
2
dz

z

=
γ4q2(γ)

(θ − γ2)2

1

2πi

∮
dz

(1 − γz−1)(1 − γz)z

=
γ4q2(γ)

(θ − γ2)2(1 − γ2)
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1.6 Empirical Results

Do parameterizations of the Evil Agent game do a good job of fitting the

data? We begin with the simplest possible univariate setup and then proceed to

more realistic and complex environments. In the univariate case, we use the dividend

process that was used in Shiller (1981). Thus

q(L) =
1

1 − ρL
(1.39)

where ρ = 0.95. The analytical results allow us to use any dividend process; this

particular choice reflects our desire to keep the initial model comparison between the

results of Shiller (1981) and this work as easy as possible.

1.6.1 Univariate θ Estimation

As a first pass, we take the function for price prediction and ask, “given the

data, what value of θ would create price volatility in our model equal to that in the

data?” This is done assuming the dividends were generated by the AR(1) process in

Shiller (1981); the required θ = 1.62. To put this into context, we examine what this

implies the investor must be thinking about dividends.

1.6.2 Detectability of θ

In the EA game, the final dividend process being targeted by the IA is ex-

pressed by equation (1.38). This means that the variance calculation of the resulting

dividend process can be written:
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var [C(L)εt] = σ2
ε

{(
1 +

γ2

θ − γ2
q(γ)

)2

+ c2
1 + c2

2 + c2
3 + . . .

}

= σ2
ε

{(
1 +

γ2

θ − γ2
q(γ)

)2

+ ρ2 + ρ4 + ρ6 + . . .

}

= σ2
ε

{(
1 +

γ2

θ − γ2
q(γ)

)2

+
ρ2

1 − ρ2

}
(1.40)

Now, compare the result in equation (1.40) with the variance of dividends if they

were produced by the AR(1) process given above:

var[q(L)εt] =
σ2

ε

1 − ρ2
. (1.41)

To compare the two, we calculate

var[C(L)εt]

var[q(L)εt]
=

σ2
ε

{(
1 + γ2

θ−γ2 q(γ)

)2

+ ρ2

1−ρ2

}
σε

1−ρ2

= (1 − ρ2)

{(
1 +

γ2

θ − γ2
q(γ)

)2

+
ρ2

1 − ρ2

}

= (1 − ρ2)

(
1 +

γ2

θ − γ2
q(γ)

)2

+ ρ2

= 606.55,

which indicates that the investing agent is guarding against a dividend process that

is quite different from what has been observed. The problem with this comparison is

that it does not permit compromise: is there a θ that gets price variability “close”
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without making dividends too variable? To study this, we will need to estimate a

system which simultaneously fits both the price and dividend processes.

1.6.3 Bivariate Estimation

We begin by specifying a general bivariate moving average representation for

dt and pt.:

⎛
⎜⎜⎝dt

pt

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝A(L) B(L)

C(L) D(L)

⎞
⎟⎟⎠

⎛
⎜⎜⎝εdt

εpt

⎞
⎟⎟⎠ .

In order to accommodate the cross-equation restrictions implied by the present value

relationship, we identify the system by restricting the innovations to be uncorrelated

and unit variance Guassian processes. It is possible to describe both the least-squares

prediction problem and the Evil Agent game within this structure. In fact, the

calculations of the previous sections are now applied column by column, so that the

elements of C(L) are functions of the elements of A(L), and D(L) is a function of

B(L). We choose to specify dividends as the sum of a persistent component (like

Shiller’s AR(1) process) and a transitory component. Then the restricted moving

average representation in the least squares case is

⎛
⎜⎜⎝ALS(L) BLS(L)

CLS(L) DLS(L)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ A0

B0

1−bL

LA(L)−γA(L)
L−γ

LB(L)−γB(γ)
L−γ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝A0

B0

1−bL

A0
B0

1−bγ

(
1

1−bL

)
⎞
⎟⎟⎠

while in the Evil Agent game the MA is
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⎛
⎜⎜⎝AEA(L) BEA(L)

CEA(L) DEA(L)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ A0 + γ2

θ−γ2 A0
B0

1−bL
+ γ2

θ−γ2

(
B0

1−bγ

)
LA(L)−γA(L)

L−γ
+ γ2

θ−γ2 A(γ) LB(L)−γB(γ)
L−γ

+ γ2

θ−γ2 B(γ)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

A0θ
θ−γ2

B0

1−bL
+ γ2

θ−γ2

(
B0

1−bγ

)
A0θ2

(θ−γ2)2
B0θ−γ2B0bL

(1−bL)(θ−γ2)(1−bγ)

⎞
⎟⎟⎠ .

1.6.4 State Space Formulations

By shifting into the state space, we can make use of the powerful set of tools

available via Kalman filtering. This requires that each system be written in terms of

a state and observer system. In order to estimate the system, we construct a state-

space formulation of each of these vector MA systems which will allow us to use the

Kalman filter to perform maximum likelihood estimation. The estimation will find

parameter values for A0, B0 and b in the least-squares system, and A0, B0, b and θ

in the Evil Agent game system.

1.6.4.1 Least-Squares State Space

The natural state of the system is the persistent component of dividends:

st = bst−1 + εpt (1.42)

⎛
⎜⎜⎝dt

pt

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ B0

B0

1−bγ

⎞
⎟⎟⎠ st +

⎛
⎜⎜⎝A0 0

A0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝εdt

εpt

⎞
⎟⎟⎠ (1.43)
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where equation (1.42) is the state equation and (1.43) is the observer equation. With

this forumlation, the Kalman filter can be used to evaluate the likelihood using a

standard procedure (see, e.g., Hamilton (1994)). We find the following estimates of

the parameters:

A0 = 1.9894 , B0 = 1.2478 , b = 0.9998.

The log-likelihood of this model is -718.48. This will provide a benchmark by which

to evaluate the Evil Agent game model.

1.6.4.2 Evil Agent State Space

The state space for the Evil Agent game system can be written in the following

way:

st = bst−1 + εpt

⎛
⎜⎜⎝dt

pt

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ B0

B0

1−bγ

⎞
⎟⎟⎠ st +

⎛
⎜⎜⎝

A0θ
θ−γ2

γ2B0

(θ−γ2)(1−bγ)

A0θ2

(θ−γ2)2
γ2B0

(θ−γ2)(1−bγ)

⎞
⎟⎟⎠

⎛
⎜⎜⎝εdt

εpt

⎞
⎟⎟⎠ .

This system is estimated in exactly the same way as the least-squares system, thus

demonstrating the flexibility of state space methods for problems such as these. The
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estimation of the system results in the following maximum likelihood estimates:

A0 = 1.1693 ∗ 10−5 , B0 = 1.1922 , b = 0.9998 , θ = 10.3037.

The log-likelihood of this model is -712.03. The improvement is significant over the

least squares model. Furthermore, when compared to the univariate estimate of θ,

we that these parameter values do not make dividends too variable. Because the

estimated A0 is so small, both dividends and prices are dominated by the persistent

component, and thus the relevant ratio in this case is

var[BEA(L)εt]

var[BLS(L)εt]
= (1 − ρ2)

(
1 +

γ2

θ − γ2
q(γ)

)2

+ ρ2 = 1.2375.

Unlike the univariate case, this value for θ is very promising in terms of generating

prices and dividends which are simultaneously “close” to those in the data. The

dividends in the model would be roughly only 12% more volatile than those in the

data.

The problem, however, lies not in the volatility ratio, but in the overall fit of

the model. While the evil agent model beats the least squares model, neither fares

very well against a slightly less restrictive model. In particular, the system

st = bst−1 + εpt (1.44)
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⎛
⎜⎜⎝dt

pt

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝B1

B2

⎞
⎟⎟⎠ st +

⎛
⎜⎜⎝B3 0

B4 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝εdt

εpt

⎞
⎟⎟⎠ (1.45)

achieves a value of the log likelihood about 100 higher than the evil agent system,

indicating that there is a long way to go in fitting dt and pt jointly.

1.6.5 More Sophisticated Data-Generating Processes

The answer to this challenge lies in the use of more sophisticated processes for

dividends and prices. Consider the following bivariate ARMA(3,1) process.

⎛
⎜⎜⎝dt

pt

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝A(L) B(L)

C(L) D(L)

⎞
⎟⎟⎠

⎛
⎜⎜⎝εdt

εpt

⎞
⎟⎟⎠

where

A(L) =
ρ0

(1 − ρ3L)(1 − ρ4L)
, B(L) =

μ0(1 − μ1L)

(1 − L)(1 − μ3L)(1 − μ4L)
. (1.46)

This results in the following processes for C(L) and D(L):

C(L) =
LA(L) − γA(γ)

L − γ
+

γ2

θ − γ2
A(γ) , D(L) =

LB(L) − γB(γ)

L − γ
+

γ2

θ − γ2
B(γ).

(1.47)
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We were led to this specification of A(L) and B(L) by an exploration of the

likelihood prompted by difficulties in estimating the model with general ARMA(3,1)

specifications for A(L) and B(L). We suspect that these difficulties were caused by

near cancellations of roots of the numerator and denominator polynomials of our

specified ARMAs, together with the presence of a highly persistent autoregressive

component. Both maximum likelihood estimation and exploration of a diffuse-prior

Bayesian posterior by Markov Chain Monte Carlo methods were much better behaved

with the more parsimonious specification.

To determine the relevant unrestricted alternative to (1.46) and (1.47), note

that for the given A(L) and B(L), the cross-equation restrictions of the evil agent

setup cause C(L) to be ARMA(2,2) and D(L) to be ARMA(3,3). Thus the unre-

stricted model specification has

A(L) =
α0

(1 − α1L)(1 − α2L)
, B(L) =

β0(1 − β1L)

(1 − L)(1 − β3L)(1 − β4L)
. (1.48)

C(L) =
χ0(1 + χ1L)(1 + χ2L)

(1 − χ3L)(1 − χ4L)
, D(L) =

δ0(1 − δ1L)(1 − δ2L)(1 − δ3L)

(1 − L)(1 − δ5L)(1 − δ6L)
. (1.49)

It is helpful to note the way in which the models (the game model, the un-

restricted model, and the least-squares model) are nested. The least-squares model
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Parameter Estimate Standard Error

ρ0 0.6694 0.046

ρ3 0.9181 0.046

ρ4 0.1676 0.104

μ0 0.1667 0.035

μ1 -0.4785 0.033

μ3 -0.0390 0.064

μ4 0.9784 0.016

Table 1.1: Least-Squares Model Parameter Estimates. Log-Likelihood Value: -589.63

is nested within the game model, by placing a restriction on one parameter: the LS

model restricts θ to be ∞. The unrestricted model nests the game model – the cross

equation restrictions represent specific restrictions on the values of the χ’s and δ’s in

C(L) and D(L). Because of these nesting relationships, comparison between models

can be accomplished with a simple likelihood ratio test.

1.6.6 The Model Estimates

1.6.6.1 The Least-Squares Model

The estimation of the least-squares model is summarized below.

1.6.6.2 The Game Model

The estimation of the game model is described below.
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Parameter Estimate Standard Error

ρ0 0.5844 0.039

ρ3 0.6561 0.112

ρ4 0.1505 0.162

μ0 0.2704 0.063

μ1 -0.6767 0.038

μ3 0.5249 0.157

μ4 0.7639 0.122

θ 2.1645 0.135

Table 1.2: Game Model Parameter Estimates. Log-Likelihood Value: -577.77

As can be seen by looking at the estimates of the maximum likelihood of both models,

the likelihood ratio test produces a rejection of the “restricted” model, the LS model,

in favor of the game model. This rejection is at the 99% level.

1.6.6.3 The Unrestricted Time-Series Model

The estimation of the unrestricted model is described below.

Due to the fact that the unrestricted model has a total of ten fewer restrictions

than the game model, the likelihood ratio test critical value (at 95%) is approximately

18.3. The test statistic in this case is 16.9, well inside the region in which we fail to

reject the more restrictive game model in favor of the pure time-series model listed
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Parameter Estimate Standard Error

α0 0.5924 0.040

α1 0.5862 0.225

α2 0.3091 0.262

β0 0.1448 0.059

β1 0.9988 0.981

β3 0.0451 0.364

β4 0.0425 0.410

χ0 4.9994 1.001

χ1 0.1782 0.077

χ2 0.9999 0.996

χ3 -0.4469 0.090

χ4 0.5127 0.044

δ0 19.0235 1.042

δ1 0.6666 0.064

δ2 -0.6250 0.216

δ3 -0.6227 0.200

δ5 -0.2505 0.025

δ6 0.8350 0.084

Table 1.3: The Unrestricted Model Parameter Estimates. Log-Likelihood Value: -
569.32
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above.6

1.6.6.4 Analysis of Results

The results show that we reject the LS model in favor of the Game model.

This is significant, but not totally unexpected, given that we use an additional pa-

rameter. However, we later see that untying the rational expectation cross-equation

restrictions, creating the unrestricted model — giving the flexibility of ten additional

free parameters — this much less restrictive framework generates less of a gain over

the Game model than the Game model achieved over the LS model using a single

additional parameter.

1.7 Conclusion

In most modern economic models, agents deal in risk rather than uncertainty.

In reality, economic decision-makers are forced to account for both. This paper has

placed the agents in the model on the same footing as the authors of the model: the

real world contains data generating processes (DGP) for which we have estimates, but

not certainties. Through the mechanism of robust prediction and control, agents deal

with this uncertainty by making decisions that are less sensitive to misspecifications

of the DGP.

For the present value model of stock prices, the application of robust decision-

6The test statistic with the updated data is 19.0, which has a marginal significance level
of 0.0401 rather than the original dataset’s marginal significance of approximately 0.0766.
Tests for marginal significance levels are under way to determine if the change in p-level is
attributable to a change in the performance of the model, or just to the fact that the model
is being examined with 30% more data.
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making yields a model whose behavior more closely mimics that of the actual data.

With robust predictions, the simple present-value model produces stock prices that

display the “excess volatility” seen in the data. Thus not only is uncertainty regarding

the DGP realistic, it also suggests the resolution of a long-standing economic puzzle

in a plausible manner. The resolution of the excess volatility puzzle by such a simple

modification in such a simple model suggests that the modification might bear fruit

in other, more complex settings.
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CHAPTER 2
THE TWO-PERIOD RATIONAL INATTENTION MODEL:

ACCELERATIONS, ADDITIONS AND ANALYSES

2.1 Inattention and the Two-Period Model

The Rational Inattention (RI) paradigm introduced in Sims (2003) initiated

analysis of economic models of agents with limited information-processing capacity

who have quadratic objectives and face linear constraints. Sims (2006) demonstrated

the specific approach to be taken in pursuing these types of models in more general

environments than those of the earlier work. This paper demonstrates that there

is a formulation of Sims (2006) problem that renders it into a convex programming

problem, demonstrates a powerful solution tool for these more general RI models,

and provides analysis of why using these procedures can be important.

Sims (2006) provides a numerical solution to the two-period consumption-

choice problem of a rationally inattentive agent facing an information-processing ca-

pacity constraint. Such an agent, unlike the capacity unconstrained agent who knows

a specific value for the state variable and chooses a corresponding value for the choice

variable, knows only a distribution for the state variable and chooses the joint dis-

tribution of state and choice variables. This paper addresses solution methods for

these types of problems and demonstrates that RI need not impose large computa-

tional burdens. We will see that a new software suite, combined with a well-posed

version of the model, can generate solutions in seconds rather than minutes, opening

up new horizons for RI problems. The solutions we derive for the two-period problem
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are similar but not identical to those found in Sims (2006), and we will address the

reasons for these differences. Despite the difference, Sims’ central conclusions are

robust: the consumption choices of information-processing-capacity-constrained indi-

viduals have a discrete nature even when the wealth distribution is continuous, and

more risk averse individuals choose distributions for consumption (given the wealth

distribution) that are more disperse at high wealth and more precise at low wealth.

The new computational approaches are generalizable to richer environments; one gen-

eralization undertaken here is the addition of production to Sims’ model; his central

themes are preserved in this context as well.

2.2 The Two-Period Model

The two-period model of Sims (2006) highlights the central difference between

rational inattention (RI) and other information frictions. The choice variable in

the model is the form of the joint distribution of consumption and wealth, and the

informational “shortage” is one of processing capacity, rather than information avail-

ability.1

To begin, absent information-processing constraints, Sims’ model is a simple

two-period choice of consumption, with an undiscounted, two-period utility function

that divides a pool of resources into those consumed now with some probability, and

expected consumption in the subsequent time period. This is an undiscounted “cake-

eating” problem in which the agent takes a given amount of wealth, w, and divides

1In an effort to make each essay self-contained, much of this discussion is repeated in
Lewis (2007b).
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it optimally between consuming c in period one and w− c in period two. That is, for

CRRA preferences,

max
c≤w

c1−γ + (w − c)1−γ

1 − γ
,

for a given w. The solution to this problem is an optimal decision rule, denoted f ,

that describes the optimal plan for the choice variable, c, given a value for the state

variable, w. That is, the solution is a one-to-one mapping from the state-space to

the choice-space, described by c∗ = f(w). The solution to the agent’s maximization

problem here is given by:

c∗ = f(w) =
w

2
,

that is, the agent should consume half his wealth in each of the two periods. For

a given value of w, this describes a corresponding value for c. Even if wealth is

characterized by a probability distribution, the optimal f describes a mapping from

each potential value of w to a single corresponding value for c.

2.2.1 A Generalization

To set the stage for the information-constrained problem to come, consider

a generalization of the cake eating problem in which the cake (wealth) and bites

of the cake (consumption) only come in a finite set of discrete values c1, c2, . . . , cNc

and w1, w2, . . . , wNw . Suppose further that wealth is characterized by a probability

distribution g(w). The decision rule, c∗ = f(w) = w/2, becomes the method for
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generating a set of conditional distributions – one for each wealth value. Each of these

conditional distributions for consumption is degenerate, that is, the joint distribution

f(c, w) describes the same thing as the c∗ = f(w) = w/2: a one-to-one mapping from

state-space to choice-space. To clarify what is being solved, the discretized version of

the two period model is written:

max
{f(ci,wj)}

Nc∑
i=1

Nw∑
j=1

c1−γ
i + (wj − ci)

1−γ

1 − γ
f(ci, wj) (2.1)

subject to:

f(ci, wj) ≥ 0 (2.2)

Nc∑
i=1

f(ci, wj) = g(wj) for j = 1, . . . , Nw (2.3)

f(ci, wj) = 0 , ∀(i, j) such that ci > wj (2.4)

Regarding the formulae above, the domains of the consumption and wealth distri-

butions have been discretized into two sets of size Nc and Nw, respectively, where

i is the index over c and j is the index over w (this convention will be maintained

throughout). f(c, w) is the joint distribution of consumption and wealth, and is the

choice variable of this optimization problem. g(w) is the marginal distribution of

wealth in the problem (taken as given).

The properties of the problem and the optimum are qualitatively unchanged
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under this generalization. Suppose that the marginal distribution of wealth is trian-

gular, meaning higher levels of wealth have higher probability. The optimal decision

rule is the joint distribution f(c, w) that describes the same one-to-one mapping that

divides wealth into two halves and consumes one in each time period. Under the gen-

eralization, however, this is accomplished by assigning probability to specific (ci, wj)

pairs. That is, given a distribution for wealth, the agent disperses the probability

weight g(wj) across the possible values {ci}Nc
i=1 such that weight is only allowed where

ci ≤ wj. The optimal choice, as seen in figure 3.3, is to place all of the probability of

being at wealth node wj on the pair (ci = wj/2, wj), that is, f(ci = wj/2, wj) = g(wj).
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Figure 2.1: A One-to-One Mapping via the Joint Distribution f(c, w).

Figure 3.3 represents the joint distribution of c and w over the [0, 1] interval when

the (c, w) space is discretized. The darkness of the boxes indicates the weight of
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probability on that specific (c, w) pair. The darker the box, the higher the probability

weight, as indicated by the legend on the right-hand side of the figure. The boxes get

darker as they progress “northwest” because the marginal distribution of wealth, g(w),

is triangular. The solution, f(ci = wj/2, wj) = g(wj), demonstrates that within this

generalization the one-to-one mapping takes the form of creating a set of conditional

distributions of c given w that are degenerate at ci = wj/2.

2.2.2 The Processing-Constrained Problem

The rational inattention framework uses the metric of mutual information to

quantify the amount of information-processing capacity the agent is using to solve his

optimization problem. By placing a constraint on mutual information, the framework

limits the strength of the relationship between c and w by limiting the precision with

which either variable can be understood by the agent. As the amount of information

the agent can process is reduced from the amount required to produce the one-to-one

relationship described in figure 3.3, the agent must decide how best to allocate the

finite resource of processing capacity across the space of his choice variable.

The agent’s optimization problem in the information-processing constrained

universe is the same as the one detailed in equations (2.1) through (2.4) above, with

the addition of the following constraint on the amount of mutual information in the

model:
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Nw∑
j=1

Nc∑
i=1

log[ft(ci, wj)] · ft(ci, wj) −
Nc∑
i=1

(
log

( Nw∑
j=1

ft(ci, wj)

)
·

Nw∑
j=1

ft(ci, wj)

)
(2.5)

−
Nw∑
j=1

log(gt(wj)) · gt(wj) ≤ κ.

As the amount of information-processing capacity (κ) decreases, the effect on the

agent is similar to that of increasing the noise in a signal-extraction version of the

same problem.2 In the past, economic models have tried to explain the difference

between theory and empirical observation in many models by assuming the existence

of an exogenous noise that complicates the understanding of the state of the model.

The rational inattention framework does something similar to this by describing an

environment in which the “noise” is endogenously determined rather than exogenously

given: it arises from the agent’s inability to accurately asses this state of the model

because he does not have the information-processing resources to do so.

2.3 A Convex Problem

RI models represent a potentially large burden on numerical optimizers. Rather

than choosing specific values for choice variables given state variables, the optimizer is

asked to choose large joint distributions of state and decision variables. It is beneficial

to know that this model, though large, is far from numerically intractable. We show

here that, contrary to what is stated in Sims (2006), the constraint set and therefore

the problem as a whole is convex.

2Mutual Information, as defined in equation (2.5), is given (within the information theory
literature) in bits (binary digits), as a result of using base 2 logarithms. The units of κ in
our models are known as “nats”, because we us natural logarithms.
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The choice in the problem is f(ci, wj) (from now on: fi,j). Note that the nodes

for consumption and wealth are fixed and it is the probabilities fi,j that are chosen.

Thus, the objective function is a weighted sum and linear. Constraints (2.2), (2.3)

and (2.4) are linear. In order for the problem to be convex, we must demonstrate:

Theorem 2.1. For fi,j > 0,

MI(fi,j) =
Nc∑
i=1

Nw∑
j=1

fi,j · log(fi,j) (2.6)

−
Nc∑
i=1

{[∑
j=1

fi,j

]
·
[

log

(∑
j=1

fi,j

)]}

−
Nw∑
j=1

g(wj) · log(g(wj)) ≤ κ.

is convex in fi,j.

Proof. Because g(w) is fixed, we can limit our attention to demonstrating that

MI ′(fi,j) =
Nc∑
i=1

Nw∑
j=1

fi,j log(fi,j) −
Nc∑
i=1

{[
Nw∑
j=1

fi,j

]
·
[

log

( Nw∑
j=1

fi,j

)]}
(2.7)

is convex. To begin, simplify the remaining problem by separating the i and j sum-

mations.

MI ′(fi,j) =
Nc∑
i=1

{
Nw∑
j=1

fi,j log
(
fi,j

)−
[

Nw∑
j=1

fi,j

]
·
[

log

( Nw∑
j=1

fi,j

)]}
(2.8)

The outermost summation in equation (2.8) is the only summation over the i index,

which means that we consider only the piece inside that sum, because if it is convex,
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the summation over i’s will be the sum of convex functions, which is also convex.

Now, the goal becomes to prove that

MI ′′(fi,j) =
Nw∑
j=1

fi,j log(fi,j) −
[

Nw∑
j=1

fi,j

]
·
[
log

( Nw∑
j=1

fi,j

)]
(2.9)

is convex for a given i. To this end, we clean the notation up with the following

substitutions:

fi,j = xj , x = [x1, x2, . . . , xN ]′ , X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 0 · · · 0

0 x2
...

...
. . . 0

0 · · · 0 xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Also, we define

e = [1, 1, . . . , 1]′ , E = ee′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1 1
...

...
. . .

...

1 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where e and E are N × 1 and N × N , respectively. With this new notation, the

problem reduces to demonstrating that

h(x) = xT log(x) − (eT x) log(eT x) (2.10)

is convex. To this end, we will show that the hessian of h is positive semi-definite.
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∇h(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

log(x1)

log(x2)

...

log(xN)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

log(eT x)

log(eT x)

...

log(eT x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.11)

∇2h(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
x1

0 · · · 0

0 1
x2

...

...
. . . 0

0 · · · 0 1
xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
eT x

· 1 1
eT x

· 1 · · · 1
eT x

· 1
1

eT x
· 1 1

eT x
· 1 ...

...
. . .

...

1
eT x

· 1 · · · · · · 1
eT x

· 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= X−1 − 1

eT x
E

(2.12)

For the hessian to be positive semi-definite, we need to show that, for all

non-zero y ∈ RN ,

yT∇2h(x)y ≥ 0. (2.13)

Some preliminary algebra yields:

yT∇2h(x)y = yT

(
X−1 − 1

eT x
E

)
y = yT X−1y − 1

eT x
yT Ey. (2.14)

Breaking this into two pieces, we address the rightmost element first:
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yT Ey =

[
y1 y2 · · · yN

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

1
. . .

...

...
. . .

...

1 · · · · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (eT y)2 (2.15)

Therefore,

1

eT x
yT Ey =

(eT y)2

eT x
. (2.16)

The remaining part of the equation can be simplified to:

yT X−1y =

[
y1 y2 · · · yN

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
x1

0 · · · · · · 0

0 1
x2

...

...
. . .

...

...
. . . 0

0 · · · · · · 0 1
xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

...

yN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
N∑

j=1

y2
j

xj

. (2.17)

Therefore, we need to show that

N∑
j=1

y2
j

xj

≥ (eT y)2

eT x
. (2.18)

In order to demonstrate (2.18), we will make two additional assumptions:

1. Assume, without loss of generality, yj ≥ 0 ∀ j

• The reason that this assumption can be made without loss of generality is

that replacing y with |y| will only increase eT y while leaving y2
j unchanged.
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Implicitly, we are making use of the fact that requiring |y1+y2+· · ·+yN | ≤

|y1| + |y2| + · · · + |yN | does nothing to aid in the proof.

2. Assume, without loss of generality,
∑

yj = eT y = 1.

• This assumption is allowed because the sign of yT∇2h(x)y is invariant with

respect to a scaling of y and eT y = 0 is impossible when yi ≥ 0 and y �= 0.

Before taking advantage of the two assumptions, note that

N∑
j=1

y2
j

xj

=
N∑

j=1

yj

(
yj

xj

)
=

N∑
j=1

yj

(
xj

yj

)−1

. (2.19)

Therefore, we need to show:

N∑
j=1

yj

(
xj

yj

)−1

≥ (eT y)2

eT x
. (2.20)

To this end,

1. Define qj =
xj

yj
,

2. Recall that yj ≥ 0 for i = 1, . . . , N and
∑

yj = eT y = 1,

3. Note that f(q) = 1/q is a convex function.

Therefore
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N∑
j=1

yjf(qj) ≥ f

(
N∑

j=1

yjqj

)
(2.21)

=⇒
N∑

j=1

yj

(
xj

yj

)−1

≥
[

N∑
j=1

yj

(
xj

yj

)]−1

(2.22)

=

(
N∑

j=1

xj

)−1

(2.23)

=
1

eT x
(2.24)

=
(eT y)2

eT x
. (2.25)

Meaning

N∑
j=1

yj

(
xj

yj

)−1

=
N∑

j=1

y2
j

xj

≥ (eT y)2

eT x
. (2.26)

Therefore, ∇2h(x) is positive semi-definite. This means that equation (2.9) is convex

for a given i, and thus that the sum over i in equation (2.8) is the sum over con-

vex functions making equation (2.7) convex, meaning that the mutual information

constraint, equation (2.6), is convex for fi,j > 0.

The problem specified in equations (2.1) through (2.5) has the requirement

that fi,j ≥ 0, rather than fi,j > 0. It should also be noted that some fi,j’s will

be restricted to be zero by the feasibility constraint [equation (2.4)], thus it is im-

portant that we consider fi,j = 0. What we have demonstrated is that the MI

constraint is convex on the interior of the feasible set. We know, however, that be-

cause lim
p→0

p log(p) = 0, that the MI constraint is continuous on the whole feasible set
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fi,j ∈ [0, 1], including the boundary. Therefore, since the function is continuous on

the closed set [0, 1] and convex on the interior, the function is convex on the closed

set. Therefore the problem specified in equations (2.1) through (2.5) is a convex

programming problem.

2.4 The Solution Procedure

Because we know that the problem is convex, any local optimum will be a

global optimum. The numerical optimizing method we implement is very similar to

the one proposed in Sims (2006), but makes use of a sophisticated software package,

AMPL (literally: A Mathematical Programming Language), that deserves recognition

within this branch of the economics literature. AMPL is the ideal front-end for a

powerful numerical optimizer, and the clarity of coding afforded by AMPL allows easy

access to complicated problems, making RI models an excellent forum in which to

demonstrate the software.

Some features of the software suite should be illustrated. First, AMPL is not an

optimizer in itself, but rather a front end for a large number of potential optimization

algorithms, each of which has properties suiting it to a specific set of problems. AMPL

has several features that bolster its capabilities as an optimization front-end. First,

AMPL is an intuitive language for economists: the problems are written down almost

exactly as they appear in the literature. Second, AMPL has a function called presolve

that examines the problem and eliminates variables based on constraints and makes

calculations that can simplify the problem. Third, and most important, is the way
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that AMPL deals with differentiation.

The key to the efficacy of a large class of numerical optimization scheme lies

in derivatives, meaning that gradients and hessians must be supplied. In AMPL, these

are generated by means of automatic (or algorithmic) differentiation. The speed and

accuracy of the optimizer depend on the information available about the hill being

climbed. Automatic differentiation (AD) provides the gradients without truncation

errors of a procedure like divided differencing or the excessive memory usage (storage

and retrieval) of symbolic differentiation. AD is best thought of as a close cousin of

symbolic differentiation in that both are the result of systematic application of the

chain rule. However, in the case of AD, the chain rule is applied not to symbolic

expressions but to actual numerical values.3

While AMPL’s features allow the problem to be stated intuitively, pre-solved,

and differentiated; the object of the exercise is to find the optimum. The optimizer

used for this model is called KNITRO. KNITRO implements an interior point optimization

algorithm that makes it exceptionally well suited to the problem we are working on

here, and to RI models in general. Interior point methods approach the boundaries

of variable-space in an organized way, without taking derivatives at the boundaries.

This is important because the derivatives of this problem are not defined at the

boundaries.

The combination of AMPL and KNITRO will guarantee that, to the tolerances set

3For a discussion on this and further exposition of AD, see Griewank (2000) and Rall
(1981). For a discussion specific to its application within AMPL, see Gay (1991).
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by the user, a local optimum is found. The convexity of the problem, demonstrated

above guarantees that the optimum found by the optimizer will be a global optimum.

The time that this takes is dramatically shorter than the time (11 minutes) listed in

Sims (2006): The computational time for the problem is slightly less than one second

for the size suggested in Sims (2006) on a 3 GHz Pentium 4 machine with 4 GB of

RAM.4

2.5 Computational Issues

Three important differences exist between what has been done here using nu-

merical optimization and what was done in Sims (2006): First, Sims uses a normal-

ization to eliminate (2.3), while I leave it explicit. Second, rather than pick a value

for λ and maximize the LaGrangian for a given multiplier value, I choose a capacity

value, κ, and leave the constraint intact. AMPL deals directly with the constraints

and takes derivatives through the LaGrangian automatically, allowing it to use the

fastest optimization methods. Third, I optimize directly over the values of f rather

than their logarithm.

The third difference is one that seems minor, but is potentially the source

of the difference between the optimization results presented here and the ones in

Sims (2006). The solution procedure presented in this paper optimizes directly over

the values of f rather than their logarithm, while Sims uses the log-transform. His

reason for this is that since logarithms are undefined at zero, we can use log(f)

4A quasi-analytical solution to this model, demonstrated in appendix A, is also possible,
relatively fast, and achieves the same solutions as the method using AMPL.
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to make sure that the problem stays in the region of f > 0 values which are well

behaved (in terms of the gradient). When log(f) is very large and negative, we will

take that to be zero. The problem with the log-transform is that it vastly increases

the difficulty of the numerical optimization problem. Examination of the original

problem in the previous section illustrates the well-posed nature of the problem from

a numerical optimization standpoint. Log-transformation of the problem gives us a

non-linear, concave objective to maximize and a non-convex constraint set. While

the optimization problem is the same theoretically, it has become much harder for

numerical optimizers to solve. This is likely partially responsible for the difference

in computation times. The transformation is not the whole story, though, as we

use automatic derivatives from AMPL which will certainly increase the speed of the

optimizer as well.

2.6 Results

The results are qualitatively the same as Sims (2006). First, note that the

algorithm described above using AMPL allows us to set κ to values that no longer bind

the information-processing constraint. We see in figure 2.2 the progressive tightening

of the capacity constraint and its effect on the choice of the consumption-wealth joint

distribution. Here, the darkness of the box within the joint distribution indicates the

level of probability of being at that particular consumption-wealth pair. The values

for κ that are “tight” or “loose” depend on the size of the grid and the “complexity”

of the wealth distribution. The value κ = 4, in the case of figure 2.2, is the level



www.manaraa.com

57

of information processing capacity required to make a one-to-one decision, making

it a value that produces the same decision as the unrestricted case shown in figure

3.3. This means that the constraint is ineffective for values of κ > 4. Four nats of

information processing may seem comically small, but the reality is that the level of κ

required to make one-to-one decisions can be made to be arbitrarily high by the model

designer. As the number of nodes increases, the amount of possible combinations of

consumption and wealth increase and the value of κ required to get the result in the

upper-left-hand corner of figure 2.2 increases rapidly.5

Next, we make the comparison that Sims makes regarding risk aversion. The

differences between figure 2.3 below and its counterparts in Sims (2006) are curious,

but in the final analysis, minimal. The fact that both solution procedures outlined

about match in results gives reassurance that they both work, while further analysis

shows that the underlying message of section IV in Sims (2006) remains intact. The

point of Sims’ figures was to demonstrate how risk aversion impacts the choice of the

joint density of consumption and wealth. This impact – that as risk aversion increases

the agent prefers to give up some precision in decision making over a larger range

of consumption and wealth in favor of more accuracy where it matters most, at low

wealth levels, and less where it matter less, at higher wealth levels – is still seen here,

where the information processing capacity is fixed at 0.85 bits, and the risk aversion

5An area of potential benefit for this literature would be to adopt a new constraint
convention that states everything in terms of the percentage of “one-to-one-decision-making
capacity”. That is, in figure 2.2, κ = 4, 2, 1 and 0.5 would be replaced with κ̄ = 1, 0.5,
0.25, and 0.125. This convention could avoid future conversations about the reasonableness
the size of κ when comparing across models.
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Figure 2.2: Comparison of Different Levels of Information-Processing Capacity
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Figure 2.3: Comparison of Two Levels of Risk Aversion with Information Processing
Capacity of κ = 0.85 bits.

parameter, γ, is changed.

The differences in results between Sims (2006) and here are potentially at-

tributable to several factors. First, any replication that involves optimization de-

pends on tolerances, and that is certainly possible here. Second, we use different

optimization algorithms. However, the biggest difference is in the log-normalization,

so I have conducted an optimization using the log-transformation and an optimiza-
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tion algorithm called CONOPT, which is more similar to the optimizer Sims used. The

results are largely the same as previous figures, but simply take more time. For exam-

ple, the CONOPT/log(f) model produced qualitatively identical results to those of the

interior-point KNITRO algorithm working on the f ’s themselves, but instead of taking

one to two seconds, the CONOPT/log(f) version takes almost 7 minutes. This serves

to illustrate the reality that the problem is theoretically the same, but much harder

numerically. In addition to the excellent numerical qualities of the un-transformed

model (basically guaranteeing a solution will be found), this 200-fold increase in speed

allows us to examine a richer class of models using the current computing technology,

as in Lewis (2007b).6

2.7 The Importance of Non-Parametric Choices for f(ci, wj)

Following on the heels of Sims (2003), a number of other information-processing-

constrained-agent models were introduced into the economics and finance literature.

The problem, as pointed out in Sims (2006), is that most all of these models included

an inappropriate feature. By misusing the Gaussian-in, Gaussian-out framework of

the linear-quadratic setup of Sims (2003), model designers mistakenly used a para-

metric version of the joint distribution of state variables and choice variables (in our

model, f(c, w)). That is, in order to simplify the structure of the model, the model

6Two additional results-based appendices are available from the author upon request.
The first is a short document containing the results for f under various optimization
schemes, where all the parameters of the model are held constant. The second (also quite
brief) appendix is a demonstration that the results shown here in endowment economies
hold up in production economies as well.



www.manaraa.com

61

designers assumed that the utility-maximizing form of f(c, w) would be Gaussian,

and optimized over the parameters of the corresponding distribution. What Sims

(2006) points out is that by limiting examination of the solution-space to paramet-

ric distributions (even more – to a specific parametric distribution) is that this is

keeping the agent from actually optimizing : “In a model of an optimizing agent, the

agents objective function will therefore determine the stochastic process for the joint

behavior of actions and external signals” (Sims, 2006, pg. 3).

In order to demonstrate the problem that Sims brings up, we demonstrate the

effect on the two-period model of (ceteris paribus) requiring that f(c, w) be a bivariate

Gaussian distribution. To this end, we will use a Gaussian wealth distribution (μw =

0.5, σw = 0.25), and ask the optimizer to respect the processing constraints (κ = 1)

while choosing μc, σc and ρ to form f(c, w). The results of the choice can be seen in

figure 2.4 below. Clearly, the consumption behavior depicted by this restricted model

is different from its unrestricted partner. The utility of the agent is approximately

4% lower when restricted to making “Gaussian choices”, and we see that this is

clearly the result of being forced to use a smoother dispersion of probability across

the consumption-wealth grid.

Aside from the lower utility achieved by restricting the form of f , we see that

the consumption behavior itself has been changed quite dramatically. By insisting

on the smooth form of the Gaussian distribution, note that the agent is forced to

choose a single highest probability point and smooth “down” from there. This means

that the agent’s risk preferences cannot be taken into account as well as they can in
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the non- (or hyper- ) parametric version. The agent is able to “discretize” his or her

consumption in the unrestricted model. That is, they are able to choose more than

one mode for the resulting marginal distribution of cosumption and they can surround

consumption values they would like the give high probability with consumption levels

they can give very little probability. Ironically, the Gaussian decision rule is likely to

produce less “stickiness” than the more appropriate non-parametric specification. By

forcing the consumption marginal to take such a smooth shape, the model designer

is forcing the agent to place probability where they would prefer not to. To illustrate

this, examine the scales of the colorbars on the sides of the plots in figure 2.4. As

an example, note that the agent would like to have essentially no probability weight

on c = 0.18, while the nodes directly to the right and left of that value are among

the most heavily weighted. By enforcing Gaussianity, we have said that the agent is

essentially indifferent across those three nodes.. The tractable nature of the Gaussian-

In-Gaussian-Out assumption is a siren-call that leads not just to a different result,

but simply incorrect predictions about the consumer’s optimal behavior. Further, it

should be noted that while the non-parametric model solves in under 2 seconds, the

restricted model restricted to be parametric takes 3-4 minutes.

2.8 Conclusion

RI models represent exciting potential in economic modeling. These tools can

be extended to be used to examine models where agents are constrained in process-

ing capability without constraining how the agents use that capacity. This paper
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demonstrates that these problems can have tractable, convex representations, how to

find them, and what tools exist to deal with them quickly. We confirm the results

in Sims (2006) with regard to the effects of information-processing constraints, and

demonstrate Sims’ point regarding assumption vs. derivation of optimal behavior in

an RI environment. Our semi-analytical approach to the problem brings to light a

few numerical issues that confront all RI models and demonstrate that care needs to

be taken in translating analytical work of this nature to the computer. We demon-

strated that extensions can be easily examined using the tools presented, and look into

a future of larger and richer models of information-processing capacity constrained

agents.
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CHAPTER 3
THE LIFE-CYCLE EFFECTS OF INFORMATION-PROCESSING

CONSTRAINTS

3.1 Introduction

Mounting evidence suggests that the hump-shaped profile of consumption over

the life-cycle is a consequence of individual choice, and not an artifact of other fac-

tors such as growth in family size or accumulation of durable goods or even general

economic growth during an agent’s life [Gourinchas and Parker (2002), Fernández-

Villaverde and Krueger (2004)]. The hump-shape runs counter to intuition regarding

the smoothing behavior of economic agents: one would expect consumers to save and

dissave so as to keep consumption relatively constant from year to year. This paper

seeks to demonstrate that the phenomenon can be explained within a framework that

includes uncertainty and information-processing constraints popularized recently in

the Rational Inattention (RI) paradigm of Sims (2003, 2006). The paper takes seri-

ously the notion of optimal use of information-processing capacity and in doing so,

derives a hump-shaped profile of consumption over the life-cycle, as well as circum-

stances under which agents have a non-trivial probability of leaving behind wealth

when they die, despite exact knowledge of the timing of their mortality.

The RI paradigm has been recently advanced to a more general framework

in Sims (2006). Prior to this work, models including information-processing con-

straints bypassed the central issue of RI by appealing (in some cases, incorrectly) to

a Gaussian-in, Gaussian-out framework that side-stepped the question of how agents
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should allocate their information-processing resources. This paper seeks to examine

this resource-allocation question in a simple life-cycle setting, using much of the same

technology of the Sims (2006) two-period model, but with the addition of a trade-

off allowing agents to give up processing power for something of economic value. It

focuses on the dynamics of the information problem and the value of information-

processing capacity, and demonstrates anew that simple applications of uncertainty

and information-processing constraints can produce substantial changes in otherwise

standard models.

Many papers in the life-cycle literature share the presumption that uncertainty

regarding the agent’s environment likely plays a role in the profile of consumption

over time [Caballero (1990), Carroll (1992, 2004), Deaton (1992), Sims (2003), Luo

(2004)]. How the agent confronts this uncertainty is at the center of several attempts

to resolve the consumption puzzle. Most of these (excluding those of Sims and Luo)

assume that the agent is aware of all information in the system at all times, even

in cases where “all the information” includes knowing complicated distributions over

many variables. This represents a large abstraction from reality that is accepted in

the name of model tractability. On the other hand, the purpose of the RI framework

is to take seriously the notion that agents do not possess infinite computational power.

As demonstrated in Sims (2003), among others, information-processing constraints

produce results which look more like observed data; a similar result characterizes

this extension. By providing an analysis of the dynamics of optimal information-

processing allocation, this paper takes a step toward including these types of frictions
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in more general economic models.

The remainder of the paper is structured as follows: Section 3.2 contains a

discussion of the rational inattention problem both in general and as applied specif-

ically in this model. Section 3.3 describes the life-cycle consumption problem and a

brief description of its history. Section 3.4 lays out the specifics of the model, while

section 3.5 provides an analysis of the model results and discusses the optimal alloca-

tion of information processing that leads to the hump-shaped behavior. Section 3.6

concludes.

3.2 Rational Inattention

The idea behind rational inattention is not new. It can traced back at least as

far as a 1978 address to the AEA meetings by Herbert Simon, who titled a portion

of his talk “Attention As The Scarce Resource” [(Simon, 1978, p. 13)]. Indeed, we

observe in our own lives that we do not possess unlimited information processing

ability. As Sims points out: “...modeling agents as finite-capacity channels...fits well

with intuition; most people every day encounter, or could very easily encounter, much

more information that is in principle relevant to their economic behavior than they

actually respond to” [(Sims, 2006, p. 2)]. What rational inattention provides is a com-

prehensive framework for stepping away from superhuman performance assumptions

about economic agents, and doing so without behavioral assumptions that eliminate

optimal use of resources, and without introducing arbitrary frictions.

Rational inattention is more than just limiting the information used by an
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agent in his or her decision-making. It does not correspond to delaying or disguising

the information either, as with most “information frictions.” The central theme is one

of optimal choice regarding how to reduce uncertainty. Agents make decisions that

affect how the uncertainty in their world is reduced in a given time period by choosing

what to pay attention to. A fundamental tenet of rational inattention is that the agent

has all the current information at his or her disposal, but chooses optimally what to

pay attention to – thus the monicker. This is different from the “inattentiveness” of

Reis (2006) and Reis (forthcoming), wherein price-setting producers and consumers

update their information only occasionally, but completely. Reis states in both papers

that the applications of the two concepts are in theory quite similar, but practically

speaking they approach the issue from two distinct sides: rational inattention focuses

“on the information problem facing agents, at the cost of simplifying the study of

their real actions;” while inattentiveness “focuses on these real decisions. . . at the cost

of simplifying the information acquisition problem” [(Reis, forthcoming, p. 3)]. Thus

while inattention is the optimal response to a finite capacity to process, inattentiveness

results from an inability to acquire information frequently.

3.2.1 Information Theory and the Linear-Quadratic Model

The usefulness of information theory in the attention-allocation problem comes

from its well-defined accounting of uncertainty. The measure of uncertainty is Shan-

non entropy, to be defined presently.1 Using this metric, anything that reduces the

1Information theory is not the only scientific field to make use of the word entropy.
Among them, physics – specifically the physics of heat – also uses this term. The word
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amount of uncertainty (entropy) in the system can be accurately measured in terms

of its information content, where information is defined as anything that changes the

level of entropy in the system.

In economic models, uncertainty generally takes the form of variables that are

characterized by probability distributions rather than being known explicitly. In the

case of a Gaussian random variable, entropy is determined by the variance.2 In Sims

(2003), the use of information theory to assess the information being processed took

advantage of this variance-entropy link, as well as other properties of the Gaussian

p.d.f., in order to examine the permanent income hypothesis (PIH) under information

constraints.3

In a simple PIH model with linear constraints and a quadratic utility function,

maximization of utility subject to an additional information-processing constraint im-

plies a Gaussian distribution over the state variable, wealth, conditional on currently

processed information. Further analysis by Sims showed that in steady state, the

agent’s actions would be those of an individual who receives a noisy signal regarding

wealth in the form of the true value plus some idiosyncratic noise. The covariance

structure of this idiosyncratic noise is then a function of the information-processing

entropy in this and all rational inattention literature refers specifically to Shannon Entropy,
which is defined below.

2By plugging in the Gaussian p.d.f. for f(x) in the continuous case, we can see that the
entropy will be equal to one-half times the log of the variance plus a constant term, meaning
all the uncertainty in a Gaussian distribution is summarized by the variance parameter.

3Luo (2004, 2005) also make use of the LQG results of Sims (2003) in order to gain
tractability in the RI paradigm.



www.manaraa.com

70

constraint and the variance properties of transitory income. This type of result, that

the information-processing constrained agent will behave as if he observes a noisy

signal whose noise is an i.i.d. Gaussian random variable, is a result specific to the

LQG framework and is not generally true outside of these very special circumstances.

The result that the agent’s optimal ex-post uncertainty was Gaussian combined with

the linearity of the model due to the variance-entropy relationship of the Gaussian

distribution allows this very special framework to be examined using tools designed

for use in dynamic signal-extraction models with rational expectations. That is, the

ability to make use of the Kalman filtering technology is a direct result of the fact

that optimal attention allocation yields Gaussianity in the ex-post uncertainty. Sims

(2006) emphasizes that assumptions about the form of optimal ex-post uncertainty

are almost assuredly wrong (except in a few special cases), and that models that

assume an arbitrary functional form for ex-post uncertainty are implicitly assuming

that the agents in the model are not optimizers.

3.2.2 Information Theory and the General Model

Once we are outside the LQG universe, the behavior of an agent allocating

attention to resolve uncertainty in the way that will generate the highest lifetime

utility cannot be represented as a Kalman-filtering problem. As demonstrated by

Sims (2006), the choice of attention that provides the highest expected utility does

not result in ex-post uncertainty that appears to take any known functional form

except in a few isolated cases, meaning new avenues will need to be pursued.
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To facilitate a better understanding of how information is accounted for in

these types of models, a brief digression on uncertainty and information in more

general terms is warranted. For the random variable x ∼ f(x); the entropy of x is

written:

S(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
− ∫

f(x) log[f(x)]dx for continuously distributed x,

−
N∑

i=1

f(xi) log[f(xi)] for discretely distributed x.

(3.1)

Shannon’s entropy formula in (3.1) is designed to measure the amount of uncertainty

in a random variable. Shannon’s formula is derived from the following requirements.

For a discrete random variable, suppose we have a set of possible events whose prob-

abilities of occurrence are p1, p2, . . . , pn. These probabilities are known but that is

all that is known concerning which event will occur. Shannon argued that a mea-

sure [S(p1, p2, . . . , pn)] of how uncertain one is of the outcome of this random process

should satisfy three properties:

1. S should be continuous in the pi’s.

2. If all the pi are equal, pi = 1/n, then S should be a monotonic increasing

function of n. With equally likely events there is more choice, or uncertainty,

when there are more possible events.

3. If a choice be broken down into two successive choices, the original S should

be the weighted sum of the individual values of S. The meaning of this is

illustrated in figure 3.1. At the left we have three
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Figure 3.1: Decomposition of a Random Process

possibilities p1 = 1
2
, p2 = 1

3
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6
. On the right we first choose between
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2
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3
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The coefficient 1
2

is because this second choice only occurs half the time.

Appendix 2 of Shannon (1948) proves:

Theorem 3.1. The only S satisfying the three properties is of the form:

S = −K
n∑

i=1

pi log pi

where K is a positive constant only concerned with the units of the uncertainty mea-

sure.

To see how entropy is a measure of uncertainty, imagine a two-point discrete

distribution over the values x = a, with probability p, and x = b, with probability
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(1− p). It is instructive to consider how the measure of uncertainty varies with p. In

this case,4

S(x) = −p log(p) − (1 − p) log(1 − p) (3.2)

The first order conditions of either the maximization or minimization of equation

(3.2) yield the result

log(1 − p) − log(p) = 0, for p > 0

4The value of entropy is expressed in specific units. The common nomenclature of
information theory expresses these values in binary units, or bits. In order for this to
be the units of the entropy calculation, the logarithms in equation (3.1) would need to
be logarithms of base two. In most modern programming languages, and in nearly all
economic examples, the logarithms are base e (natural logarithms) and the proper units for
these calculations are named natural units, or nats. In this paper, we will use nats, however,
units of information can be easily translated. For example, to convert from logarithms of
base a to logarithms of base b, simply multiply the former by logb(a).
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The second order condition is negative for all values of p > 0, and it is clear from

the FOC and figure 3.2 that the value of p that creates the most uncertainty about

potential values of x (thus, the maximum entropy for this distribution) is p = 1/2.

It is also clear from figure (3.2) that the distribution with minimum entropy is the

one where either x = a or x = b with probability one. That is, there is zero entropy

– meaning zero uncertainty – when we know that every realization of x will be a.5

Uncertainty is reduced for randomly distributed variables as weight is concentrated

on a relatively small number of points. As weight is dispersed evenly across all

possibilities, uncertainty – and therefore entropy – increases, to a maximum when

distributed uniformly of log n when all n of the pi are equal. Additionally,

S(x, y) ≤ S(x) + S(y)

with equality only when x and y are independent. Further interesting properties of

S(x) that justify its use as a reasonable measure of uncertainty are given in Shannon

(1948).

In rational inattention, relative entropy is formed in relation to a concept

called mutual information: a measurement by which one can understand the amount

of uncertainty about one variable that is reduced by observation of another. In the

model to be laid out below, in each period we will constrain the amount of mutual

information agents can process between consumption and wealth. In particular, there

5It should be noted that while log(0) is undefined, x log(x) is a continuous function on
x ∈ [0,∞) and it can be demonstrated via L’Hôpital’s Rule that lim

x→0
x log(x) = 0.
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will be a limit to the expected reduction in the entropy of consumption that can be

achieved by observing draws from wealth. As this paper will be working in discrete

distributions, the mutual information of two discrete random variables x and y having

joint distribution f , identical N -point support, and marginal distributions p and g is

given by

MI(x, y) =
N∑

j=1

N∑
i=1

f(xi, yj) · log[f(xi, yj)]−
N∑

i=1

p(xi) · log[p(xi)]−
N∑

j=1

g(yj) · log[g(yj)].

(3.3)

The value of MI(x, y) is equal to the sum of three components in this two-variable

case: beginning at the far right, the MI(x, y) is the sum of the entropy of the marginal

distribution of x and the the marginal distribution of y, minus the entropy of the joint

distribution of x and y. Mutual information is a generalization of correlation in that

as the conditional distributions of x given y (or y given x) tighten around a single

x (or y), the amount of mutual information increases. Note that if x and y were

independent, then f(xi, yj) = p(xi)g(yj), and it is easy to see that MI(x, y) = 0.

That is, observing a random variable x independent of y provides no information

about y and vice-versa.

3.2.3 Optimal Allocation

Accounting for information flows is the groundwork for the theory of rational

inattention. Shannon (1948) also addresses what is referred to in the information

theory literature as the optimal coding problem. The optimal coding problem is
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the problem solved by agents in the rational inattention model. The goal is to take

the scarce resource, attention capacity, and allocate it in such a way as to maximize

lifetime utility. As the economic version of the optimal coding problem is presented as

the model below, we will introduce the idea of it with a quick non-economic example.6

Suppose you communicate with another individual using a system of only

zeroes and ones. You need to send the person on the other end of the line

some data represented as sequence of zeroes and ones of length 10,000.

The series, it turns out, is simply 9,999 zeroes followed by a single one.

The optimal coding problem is: What is the best way to transmit these data?

Clearly, the brute force method would be adequate, but would require 10,000 “char-

acters” to be transmitted. Suppose, however, that you could not transmit that many

characters in the time you are allotted. One intuitive way to get the information

across could be using Morse code (0 = dot, 1 = dash) to transmit the sentence: “The

stream is nine-thousand, nine-hundred, ninety-nine zeroes followed by a single one.”

You could also shorten it further by using blocks of zeroes and ones to stand for letters

and numbers, as is done in modern computers. This would require you to send only 4

blocks: “9,999”, “0”, “1”, “1”. While this example is overly simple, it illustrates the

requisite point: agents can format the information they need in order to deal with

information constraints.

6This example comes from the theory of data compression, and has been slightly over-
simplified for clarity.
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The optimal coding of information is the task of distilling data to the form

that best represents the original data-stream while meeting the requirements of a

finite-capacity transmission channel. Information-processing constraints on economic

agents force them to distill the information in their world in such a way as to consider

only the most useful elements of their complete dataset. That is, agents must solve

the problem of determining what to consider and what to ignore when faced with

their inability to consider everything.

3.2.4 Optimal Allocation and the MI Constraint

The amount of information-processing required to solve economic problems

depends on the complexity of the problem, but even the simplest problems have

processing requirements. To see how information-processing constrained models differ

from their unconstrained counterparts, consider the two-period model of Sims (2006).

This is an undiscounted “cake-eating” problem in which the agent takes a given

amount of wealth, w, and divides it optimally between consuming c in period one

and w − c in period two. That is, for CRRA preferences,

max
c≤w

c1−γ + (w − c)1−γ

1 − γ
,

for a given w. The solution to this problem is an optimal decision rule, denoted

f , that describes the optimal plan for the choice variable, c, given a value for the

state variable, w. The use of f to denote a decision rule here after using it in an

earlier subsection to denote a probability distribution is intentional: under rational
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inattention, decision rules are probability distributions. That is, the solution is a one-

to-one mapping from the state-space to the choice-space, described by c∗ = f(w). The

solution to the agent’s maximization problem here is given by:

c∗ = f(w) =
w

2
,

that is, the agent should consume half his wealth in each of the two periods. For

a given value of w, this describes a corresponding value for c. Even if wealth is

characterized by a probability distribution, the optimal f describes a mapping from

each potential value of w to a single corresponding value for c.

3.2.4.1 A Generalization

To set the stage for the information-constrained problem to come, consider

a generalization of the cake eating problem in which the cake (wealth) and bites

of the cake (consumption) only come in a finite set of discrete values c1, c2, . . . , cNc

and w1, w2, . . . , wNw . Suppose further that wealth is characterized by a probability

distribution g(w). The decision rule, c∗ = f(w) = w/2, becomes the method for

generating a set of conditional distributions – one for each wealth value. Each of these

conditional distributions for consumption is degenerate, that is, the joint distribution

f(c, w) describes the same thing as the c∗ = f(w) = w/2: a one-to-one mapping from

state-space to choice-space.

Under this “generalization,” the agent’s optimization problem is to choose the

joint distribution f(c, w) to:
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max
{f(ci,wj)}

Nc∑
i=1

Nw∑
j=1

c1−γ
i + (wj − ci)

1−γ

1 − γ
f(ci, wj) (3.4)

subject to:

Nc∑
i=1

f(ci, wj) = g(wj) ∀ j = 1, . . . , Nw (3.5)

f(ci, wj) ∈ [0, 1] ∀ i, j (3.6)

f(ci, wj) = 0 for ci > wj. (3.7)

The properties of the problem and the optimum are qualitatively unchanged

under this generalization. Suppose that the marginal distribution of wealth is trian-

gular, meaning higher levels of wealth have higher probability. The optimal decision

rule is the joint distribution f(c, w) that describes the same one-to-one mapping that

divides wealth into two halves and consumes one in each time period. Under the gen-

eralization, however, this is accomplished by assigning probability to specific (ci, wj)

pairs. That is, given a distribution for wealth, the agent disperses the probability

weight g(wj) across the possible values {ci}Nc
i=1 such that weight is only allowed where

ci ≤ wj. The optimal choice, as seen in figure 3.3, is to place all of the probability of

being at wealth node wj on the pair (ci = wj/2, wj), that is, f(ci = wj/2, wj) = g(wj).

Figure 3.3 represents the joint distribution of c and w over the [0, 1] interval

when the (c, w) space is discretized. The darkness of the boxes indicates the weight of

probability on that specific (c, w) pair. The darker the box, the higher the probability

weight, as indicated by the legend on the right-hand side of the figure. The boxes get
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Figure 3.3: A One-to-One Mapping Via the Joint Distribution f(c, w).

darker as they progress “northwest” because the marginal distribution of wealth, g(w),

is triangular. The solution, f(ci = wj/2, wj) = g(wj), demonstrates that within this

generalization the one-to-one mapping takes the form of creating a set of conditional

distributions of c given w that are degenerate at ci = wj/2.

3.2.4.2 Correlation and Mutual Information

The joint distribution of c and w in figure 3.3 shows a strong relationship

between the variables. Indeed, as the set of conditional distributions becomes de-

generate, the amount of mutual information increases toward a maximum. Mutual

information is as large as it can be in figure 3.3 because for each draw of w, a specific

c value is determined, and vice versa.
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3.2.4.3 Mutual Information and Information-Processing Capacity

The heart of the rational inattention framework is the idea that agents are

incapable of processing all the information related to their economic decisions. In

models in which wealth is the state variable, if the agent does not exactly know his

wealth in each period, he is modeled as having a distribution over wealth which stems

from a noisy signal he has received. In the rational inattention framework, the agent

is also modeled as choosing conditional distributions over consumption given wealth.

This can be thought of as stemming from the amount of attention that must be

paid to prices in order to purchase a specific value of consumption, rather than a

specific bundle of goods. An exact level of consumption spending can be met, but in

order to do so a large investment of information-processing capacity must be made:

prices must be compared and calculated, expenditures within the time period must

be accounted for precisely and updated continually. All of this is possible, but it

requires processing many small pieces of information. Processing this information

tightens the conditional distributions of consumption given wealth, moving the agent

closer to a one-to-one mapping between consumption and wealth.

The rational inattention framework uses the metric of mutual information to

quantify the amount of information-processing capacity the agent is using to solve his

optimization problem. By placing a constraint on mutual information, the framework

limits the strength of the relationship between c and w by limiting the precision with

which either variable can be understood by the agent. As the amount of information

the agent can process is reduced from the amount required to produce the one-to-
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one relationship described in figure 3.3, the agent must decide how best to allocate

the finite resource of processing capacity across the space of his choice variable. An

important result of Shannon (1948) should be noted: the information-processing ca-

pacity constraint will always bind when the amount of mutual information allowed is

less than or equal to the amount of mutual information required for an optimal uncon-

strained mapping. The agent will use all available capacity to process the information

in his environment, thus capacity equals the amount of information processed.

The agent’s optimization problem in the information-processing constrained

universe is the same as the one detailed in equations (3.4) through (3.7) above, with

the addition of the following constraint on the amount of mutual information in the

model:

Nw∑
j=1

Nc∑
i=1

log[ft(ci, wj)] · ft(ci, wj) −
Nc∑
i=1

(
log

( Nw∑
j=1

ft(ci, wj)

)
·

Nw∑
j=1

ft(ci, wj)

)
(3.8)

−
Nw∑
j=1

log(gt(wj)) · gt(wj) ≤ κ.

As the amount of information-processing capacity (κ) decreases, the effect on the

agent is similar to that of increasing the noise in a signal-extraction version of the

same problem. In the past, economic models have tried to explain the difference

between theory and empirical observation in many models by assuming the existence

of an exogenous noise that complicates the understanding of the state of the model.

The rational inattention framework does something similar to this by describing an

environment in which the “noise” is endogenously determined rather than exogenously
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Figure 3.4: Optimal Choice of Joint Distribution f(c, w) Given Triangular g(w) for
Various Levels of Information-Processing Capacity.

given: it arises from the agent’s inability to accurately asses this state of the model

because he does not have the information-processing resources to do so.

Figure 3.4 demonstrates the effect of lowering the information-processing ca-

pacity: a discretization of the consumption choices by the agent. In panel 3.4(c), the

agent chooses to place no probability weight on consuming at the level of, for example,

0.275. The agent’s noisy signal for wealth generates consumption behavior that does
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not as closely track potential differences in wealth as the information-processing un-

constrained model would. That is, there is a range of possible wealth levels that could

result in a level of consumption, and also a range of possible consumption levels that

correspond to a given potential wealth level. This is a many-to-many mapping rather

than a one-to-one mapping, but still describes how the agent chooses consumption

based on his information regarding wealth.

3.3 The Life-Cycle Model

The finite life-cycle model is a convenient vehicle for studying the dynamics

of general RI behavior. The effect of planning over a multi-period time horizon

with a per-period processing constraint can be articulated clearly without the further

complexity induced by an infinitely-lived agent. Even in this simple model, the effects

of RI-style uncertainty are significant.

3.3.1 The Canonical Life-Cycle Model

The canonical life-cycle model has no growth in income or household size,

no borrowing, no shocks to the income stream or preferences, and a certain ending

period. The agent has a constant income, no initial savings, discounts the future

geometrically, and has no uncertainty regarding the future. That is, a consumer with

period utility of consumption, ct, given by U(ct), discount rate β, initial wealth w0,

and facing a constant interest rate R, chooses c1, c2, . . . to

max
{ct}T

t=1

T∑
t=1

βtU(ct)
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Figure 3.5: The Stripped Down Life-Cycle Model

subject to:

Wt+1 = (1 + r)Wt + yt+1 − ct+1, t = 1, . . . , T − 1

St ≥ 0, t = 1, . . . , T

This “stripped-down” life-cycle model [demonstrated in Modigliani (1986), and dating

back to the mid-50’s] is a textbook staple and produces the well-known result in figure

3.5,7 of consuming a fixed fraction of life-time wealth in each period.

What is observed in the data is clearly different from figure 3.5; one re-

cent study shows: “...total consumption expenditures, as well as expenditures for

non-durables and durables display a significant hump over the life cycle, even after

7This is a picture of the result for β(1 + r) = 1. Additionally, U needs to be monotone
increasing and concave, in this case, it is CRRA. In general, the path of consumption will
increase or decrease depending on the value of βR; see e.g. Yaari (1964).
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accounting for changes in family size,” [(Fernández-Villaverde and Krueger, 2004,

pg. 2)]. Attempts to resurrect the canonical model have demonstrated the effective-

ness of introducing income or wealth uncertainty (Aiyagari (1994), Carroll (1994),

Deaton (1991)). Gourinchas and Parker (2002) note the case for long-term consump-

tion smoothing weakens substantially in light of recent empirical studies which “often

find that [household level] consumption responds to predictable changes in income.”

Similarly, so-called buffer-stock behavior ([Carroll (1997)], also called precautionary

savings and prudence elsewhere) is witnessed in the presence of uncertainty and bor-

rowing constraints, creating non-smooth consumption as well.

The RI framework can produce the observed hump-shape without the use of

income growth, changes in household size, non-geometric discounting, adjustment

costs, or many of the other common mechanisms imposed to generate these results.

This study finds that with very few free parameters, RI uncertainty can replicate

the observed hump. The only changes to the canonical model are the introduction

of uncertainty to income and wealth, and the RI mechanism by which agents can

choose how and, in this model: if and when, they would like to work to resolve this

uncertainty.

3.4 The RI Life-Cycle Model

In the canonical model, agents know their wealth and income and make pre-

cise choices regarding consumption in each period. The RI framework postulates an

environment in which this amount of attention to detail is infeasible. Agents both
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observe the world and make decisions imprecisely as a result of an inability to pay

attention to everything. That is, precision itself, in both understanding and action,

is a resource being allocated in the information-processing constrained model.

Why can’t agents choose precise levels of consumption given wealth? As men-

tioned earlier, the idea of attention as a scarce resource in the life-cycle model can

be thought of in the context of purchasing everyday goods and services. Consider

the purchase of groceries or household items that are obtained at regular intervals.

Small fluctuations in the prices of individual goods within the bundle are commonly

absorbed or ignored. Agents have a sense of (or a distribution for) their net worth

(wealth), and when wealth changes greatly, so will day-to-day consumption behavior.

How much wealth has to change in order to affect consumption behavior is a func-

tion of how much attention is paid to the distribution over wealth, and how complex

this distribution is. Similarly, total wealth is a function of income and consumption.

Small changes in consumption, due to small price fluctuations for example, are diffi-

cult to track. Having very tight conditional distributions for consumption at a specific

wealth level requires that agents very, very closely monitor small changes in prices, an

action that requires a large amount of attention. This attention might be better well

spent (in terms of lifetime utility) by less accurately determining each conditional dis-

tribution of consumption, but determining these conditional distributions over more

possible levels of wealth. Thus, the higher the entropy of the wealth distribution, the

higher the information-processing requirement of forming optimal strategies, and con-

versely, the more precisely one wishes to determine behavior at a given wealth level,
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the less precision will be “available” for consumption determinations at each addi-

tional level of wealth. Agents are simultaneously allocating attention across wealth

and consumption.

3.4.1 Income vs. Processing Capacity

In an attempt to think about the value of a unit of information-processing

capacity, we give the agent the opportunity to trade this capacity for potential future

income. One possible way to do this is to consider an environment in which the agent

has the opportunity to divide his time in the current period between two activities:

time devoted to processing information related to the current consumption-wealth

decision, and time devoted to increasing future income.

The division of time spent in the current period on the two activities is rep-

resented by the parameter, αt ∈ [0, 1], which is chosen by the agent. Current-period

information processing activities can be thought of as time spent balancing one’s

checkbook or checking one’s debit card balance, as well as clipping coupons, checking

internet sites for sales, comparison shopping within and across similar stores, deter-

mining where the lowest gas prices are locally, etc. The maximum fraction of time

that can be spent in period t is αt = 1. The formula for period t processing capacity

is written:

κt = αtκ
M , t = 1, . . . , T (3.9)

where κM is the instantaneous information-processing capacity of the agent. As αt
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increases, the agent spends more time processing information.

The other side of the tradeoff is the expected income of the agent in the

following period. One can think about the intuition of this side of the tradeoff in

the following way: this is time spent working overtime, or time spent reorganizing an

investment portfolio, or time spent playing golf with the boss, or anything that is likely

to increase the expected value of future income. Here, income is modeled in a fairly

simplistic way: period income arrives as a distribution over K nodes that are fixed

for the entire lifetime. There is no growth in income in this model. By spending time

to improve income prospects, the agent shifts probability from lower income states to

higher income states. In each period, income takes one of K values, er, r = 1, . . . , K.

If in the previous period all effort was devoted to information processing (αt−1 = 1),

the income distribution at time t is uniform. As αt−1 decreases, probability is shifted

toward values as depicted in figure 3.6, according to the following formula for the

distribution of per-period income:

bt(er|αt−1) =
r2(1−αt−1)

K∑
s=1

s2(1−αt−1)

. (3.10)

This distribution has the property that lower-α distributions stochastically dominate

(to first order) higher-α distributions. This model choice (the specific distribution

of per-period income and the corresponding effects of the tradeoff) is the focus of

ongoing research.

In each time period, the agent will have the opportunity to vary his total pool

of attention, as well as how it is used. This is important because to date, work in ra-
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Figure 3.6: An Example of the Income Process When e1 = 0, e2 = 1, etc.

tional inattention assumes only an exogenous information processing constraint that

binds. The intuition behind the binding constraint is obvious: no one can process

all the information available to them. However, one could consider devoting more

time to information processing than he or she does currently. The flexibility must

be capped such that no one can process all information, thus the κM parameter;

but an important addition to the RI literature is the concept of “paying” for addi-

tional processing capacity, which is the central idea behind the model components

described in equations (3.9) and (3.10). By beginning to analyze the value of a unit of

information-processing capacity, we can move toward models that consider the ways

in which the market helps agents solve their optimal attention-allocation problem.
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3.4.2 On the Entropy Effects of the Income Process

In equation (3.10), the mean of the time t income process is controlled by the

value of αt−1. What is seen in figure 3.6 is that in addition to the mean effect, there

is also an effect on the entropy of the income distribution. As αt−1 gets closer to zero,

more and more probability weight is taken from low income values and moved to

high income values. This has the effect of reducing the entropy of the income process

(concentrating more weight on fewer points reduces entropy). This, in turn, influ-

ences the entropy of the wealth distribution in the subsequent (and therefore every

future) period. Thus, while the original intent of the αt tradeoff was to represent the

optimal mixing of two goals — increasing future income and increasing current pro-

cessing capacity — the entropy-reducing side-effect of this particular income process

potentially muddles the interpretation of the tradeoff represented by αt.

The ideal solution to this problem would be to use an entropy-neutral (with

respect to αt−1) income process. This solution, however, is problematic. The existing

income process removes probability from lower-income and places it on higher income

values. This monotonically increases the mean and decreases the entropy of the

income distribution. What is required is an income process whose shape does not

change at all as the mean is increased by the αt parameter. For example, a univariate

Gaussian distribution with mean μ and standard deviation σ has a theoretical entropy

value of 1/2 log(2πe)+log(σ), which only depends on σ and therefore, any αt−1 scheme

that shifts the distribution by making μ a simple function of αt−1 should achieve this

entropy-neutral property.
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However, employing a discretization of the Gaussian distribution on the wealth

grid eliminates the tidiness of the theoretical entropy calculation. Consider the follow-

ing income process: a discretized Gaussian distribution where μ = (1−αt−1)μHIGH +

αt−1μLOW . Thus, as αt−1 → 0, the agent is making the mean higher and higher,

just as in the original process. The standard deviation of the discrete distribution

is σ (fixed), which on a continuum, fixes the entropy of the income process. The

discretization is accomplished by finding the value of the kernel of the N(μ, σ) distri-

bution at each income node and then dividing by the sum to normalize the income

process making it sum to one. Suppose that μHIGH = 14, μLOW = 7, σ = 1 and the

income grid is the integers from 0 to 21. Figure 3.7 shows the mean and entropy of

the income distribution for αt−1 ∈ [0, 1].

What is seen in figure 3.7 is the result of a continuous choice for αt−1 and its

effect on a discrete grid. Note that the entropy values in this example (given on the

right y-axis) differ in the seventh decimal place. This is a very small variation in the

entropy, but from a numerical optimization point of view, catastrophic. The sine-wave

pattern of entropy creates an effect that makes determination of the optimal choice of

αt−1 extremely difficult, as indicated by the optimizer’s inability to find an optimum

under this income formulation, despite such a tiny change in entropy. Therefore,

while the original model has an income process in which entropy is monotonically

increasing in αt−1, it is at least optimizable. The peaks of figure 3.7 are associated

with the integer values between μHIGH and μLOW . This sine-wave pattern exists for

any continuous choice of αt−1 on a discrete grid. The problem is a result of small
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changes in entropy due to moving tiny probability weights from lower portions of the

support to higher portions of the support, as a result of changes to αt−1.

The goal remains unsatisfied: a discrete distribution for income in which αt−1

has no effect on entropy while controlling the mean. One way of having two distri-

butions over the same support p and q with the same entropy and different resulting

means would be to have p be a simple re-ordering of q. That is, pi = qj for some i

and j. Imagine a scenario where q is a discretized Gaussian distribution with the con-

ventional bell shape. It is possible to have p be simply the probabilities from q lined

up in ascending order, over the same support. Thus, H(p) = H(q) but E(p) > E(q).

Another option would be to have a small uniform distribution that shifts (e.g. a

three-node pdf with 1/3 weight on each node), where αt−1 controlled which three

nodes received probability. Either of the two potential solutions mentioned here

require some kind of discretization of the choice of αt−1, which dramatically compli-

cates the problem. Allowing the choice of αt−1 to be from some discrete list (e.g.

αt−1 ∈ {0, 0.1, 0.2, . . . , 1}), transforms the optimization problem into what is known

as a mixed-integer nonlinear programming (MINLP) problem. These problems are

the subject of the edge of optimization theory, are ill-tempered even under the best of

circumstances and are not, at this time, a practical research avenue for this problem.8

A potential solution to the entropy-neutrality problem within the context of

8The method commonly used to solve these problems (known colloquially as “branch and
cut” or “branch and bound”) is unreliable to implement on a problem with this structure,
given the high dimensionality and complexity of the problem that remains after stipulating
a vector of αt’s. For a quick overview of MINLP’s, see Bussieck and Pruessner (2003) and
the references therein.
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the above discussion using a continuous αt choice would be to modify two probabil-

ity nodes from the discretized Gaussian distribution generated by αt−1. One could

theoretically alter two of the probability nodes to achieve two simultaneous goals:

• The modified distribution has a specific entropy, fixed to eliminate the wave in

figure 3.7.

• The modified distribution sums to one.

This process could theoretically be used to zero out the effect seen in figure

3.7, but the process would essentially involve finding the solution to the equation

p log(p) = C, and therefore mean an internal optimization designed to push the

objective of the optimization minp p log(p)−C to zero, from the point of view of the

computer, not just to an arbitrary tolerance chosen by the user. If the computer

does not zero out the entropy difference completely, the problem illustrated in figure

3.7 would persist. The internal optimization described here is very time-consuming

(asking a computer to iterate on a problem, using smaller and smaller steps until

“machine zero” is reached), if not computationally infeasible. Before this is pursued,

it is reasonable to ask if the effect we are attempting to eliminate is important to the

model results. The “side effect” we are trying to eliminate would allow the agent to

get both higher expected income and lower uncertainty about that income. Is the

agent interested in this side effect, or is the increase in the expected income the sole

reason for the agent’s choice of αt?
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3.4.2.1 Is the entropy feedback effect being used by the agent?

While it is potentially infeasible to use a continuous αt−1 to change the mean

of the discrete income process in an entropy-neutral way, it is possible to use a

continuous choice of αt−1 to change the entropy of the income process while leaving

the mean of the distribution intact. Consider the following income process:

b′t(er|αt−1) =
(K2 − (r − M)2)(1−αt−1)Z

K∑
s=1

(K2 − (s − M)2)(1−αt−1)Z

(3.11)

where M is the middle node of the income grid. This process is uniform when

αt−1 = 1, and as αt−1 → 0, weight is moved from the tails of the distribution to

the center. Thus, the mean of the income distribution never changes, but the entropy

monotonically increases in αt−1.

Optimizing using this process will let us examine the tradeoff purely between

information-processing capacity and the entropy of the future income process. The

agent will have the ability to process more information “today”, or have a more certain

income “tomorrow.” The expected income for “tomorrow” will not change, regardless

of the agent’s choice of α. What we see in figure 3.9 is that the choice is clear: the

agent prefers processing power to lowering the entropy of the income process, regard-

less of time period. That is, the agent will devote all his “energy” (as evidenced in

αt being pushed to the boundary αt = 1, ∀t) to one activity: information-processing;

and completely ignore the alternative activity of reducing the entropy of the income

process. This tradeoff is of no interest to the agent.

Figure 3.9 demonstrates that the agent is unwilling to give up any processing



www.manaraa.com

97

1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Income Nodes

PDF of Income Distribution

 

 

α = 0

α = 0.33

α = 0.67

α = 1

Figure 3.8: Mean-Neutral Income Process for Several αt Choices, K = 7, M = 4,
Z = 20



www.manaraa.com

98

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time Period

α Path Over Life Cycle

Figure 3.9: Choice of αt, Mean-Neutral Income Process

power currently to reduce the entropy of the future problem. Later, we will look at

the optimal choices for αt−1 given the original income process (the one specified in

equation (3.10)). The role of Z is to control how entropy is affected by changes in

αt−1. The value for Z used to create figures 3.8 and 3.9 changes entropy at 10 times

the rate of the entropy change in the original income process (the process in equation

3.10 which is the mean-shifting process), and values up to 50 times the rate of change

in the original income process were tested with no effect on the results seen in figure

3.9. The exercise performed here for much more extreme parameterizations indicate

that we can look at the optimal choices for αt−1 under the original specification with

reasonable expectation that the agent is making use of the feedback effect in order to
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get future and current benefits out of the income/processing-capacity tradeoff.

Therefore, while the current income process includes a feature that could be

seen as a potential wrinkle in the model results, the important feature of monotonicity

compensates for the inconvenience of the change in entropy, and the entropy effect

appears to be inconsequential from the perspective of maximizing expected utility.

3.4.3 The Agent’s Problem

The agent has the same period utility function as in the canonical model:

U(c) =
c1−γ

1 − γ
.

The objective function, however, is the generalization described in section 3.2.4.1:

the choice variable is the joint distribution of consumption and wealth in each time

period and the objective is to maximize lifetime expected utility. The choice variable,

the joint distribution over consumption and wealth in each period, is a choice of

probability weights on a fixed domain of (c, w) pairs. That is, the agent is choosing

a set of probabilities for ci and wj, i, j = 1, . . . N : f(ci, wj)’s, which means that

agents are placing weight on points, not choosing the points themselves. The grids of

support for consumption and wealth are identical, and the points are evenly spaced.

The problem is to choose α and the probabilities at each date to

max
{ft(ci,wj),αt}T

t=1

T∑
t=1

N∑
i=1

N∑
j=1

βtU(ci)ft(ci, wj). (3.12)

In choosing the weights, the agent has a standard budget/borrowing constraint
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in that he is unable to consume more than his available wealth. That is, in placing

weight on consumption-wealth pairs, he is unable to assign positive probability to

situations where consumption exceeds wealth:

ft(ci, wj) = 0 for ci > wj, t = 1, . . . , T. (3.13)

Also, the standard constraint regarding probability weights must hold

0 ≤ ft(ci, wj) ≤ 1 , i = 1, . . . , N ; j = 1, . . . , N ; t = 1, . . . , T. (3.14)

Additionally, recall that the model is one of having a distribution over wealth and

making choices that are sets of conditional distributions of consumption given wealth.

This is modeled as the choice of a joint distribution that is restricted to agree with

the marginal distribution of wealth. Therefore,

N∑
i=1

ft(ci, wj) = gt(wj) , j = 1, . . . , N ; t = 1, . . . , T. (3.15)

3.4.4 The Information-Processing Constraint

The information-processing constraint is a per-period constraint. That is, the

mutual information between consumption and wealth is restricted to be less than the

total capacity κt in each time period. The mutual information calculation in this

discrete-distribution case is identical in form to that of (3.3):
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N∑
j=1

N∑
i=1

log[ft(ci, wj)] · ft(ci, wj) −
N∑

i=1

(
log

( N∑
j=1

ft(ci, wj)

)
·

N∑
j=1

ft(ci, wj)

)
(3.16)

−
N∑

j=1

log(gt(wj)) · gt(wj) ≤ κt , t = 1, . . . , T

where the second term is the entropy of the marginal distribution of consumption

that results from choices in the joint.

3.4.5 The Wealth Transition

The challenge in the dynamic RI framework is the transition of the state

variable. Because the state variable in the general framework is a distribution, as is

the choice variable ft(ci, wj), determining the next period’s distribution of wealth is

a matter of determining the probability of being at each potential wealth node.

The wealth distribution is fully determined by the joint distribution of con-

sumption and wealth in the past period and the distribution of per-period income

in the current period. Current income is independent of prior wealth and is received

prior to any consumption decision. That is, the timing works as follows: The choice

variable in period t − 1, ft−1(ci, wj), is combined with the current period’s income

distribution, bt(e) during the working portion of the agent’s life, to determine his

current marginal distribution of wealth. In the retired portion of the agent’s lifetime,

the consumption-wealth joint distribution in the previous period fully determines the

wealth marginal distribution in the current period. The equation for the transition

of the marginal distribution of wealth during the employed portion of the lifetime is
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gt(wj) =

min(K,j)∑
r=1

[
bt(er) ·

Dt−1∑
p=j−r+1

ft−1(cp−j+r, wp)

]
, t = 2, . . . , R − 1; j = 1, . . . , N,

(3.17)

with the transition during retirement being given by

gt(wj) =

Dt−1∑
p=j

ft−1(cp−j+1, wp), t = R, . . . , T ; j = 1, . . . , N, (3.18)

where K is the number of nodes in the income distribution, R is the first period in

which the agent is retired, N is the number of grid-points in the support of both the

consumption and wealth distributions. The wealth transition represented in equations

(3.17) and (3.18) are facilitated by the choice of a specific “gridding” of the supports

for the discrete distributions involved in the model.

The support for the wealth and consumption distributions in this model is

a pair of identical, N -point grids that begin at zero and increase in equally spaced

increments. The support for the income distribution is the first K nodes of the

support of the wealth and consumption distributions. By using the same support for

all the distributions, we keep the state space as small as possible for a given set of

distributions. The transition from the current period wealth distribution (gt(w)) to

next period’s wealth distribution (gt+1(w)), given the choice of the joint distribution

ft(c, w) and per-period income distribution bt+1(e|αt) is outlined in figure 3.10. The

process is as follows: for a given node within the future wealth distribution (for

example w = 1, in figure 3.10’s example), we find the probability by looking for all

the possible combinations of current wealth, consumption, and income that could
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bring us to that point, and sum the probabilities of those events.

Figure 3.10 outlines the interaction between each of the three distributions

involved in forming the distribution of wealth in a given time period: the state variable

gt(w), the current income variable bt+1(e), and the choice variable ft+1(c, w). Note

first how the period t distribution of wealth, gt(w), restricts possible forms of the

period t joint distribution. The columns in the f matrix composed entirely of zeroes

and surrounded by dashed boxes represent the restriction in the joint distribution due

to the fact that the marginal distribution of wealth has no probability weight on those

wealth values. Therefore, the choices available to the agent regarding ft(c, w) are as

follows: for each wealth level wj, the conditional distribution for consumption divides

the weight from gt(wj) among the feasible elements of ft(ci, wj). This is done in period

t under the processing constraint that the mutual information of c and w not exceed

κt, while also choosing αt in order to balance the benefits of increased processing

capacity with increases in expected future income. The choice of αt fully determines

the weights in bt+1(e) as well. Once ft(c, w) and bt+1(e) have been determined, we

have determined the marginal distribution of wealth in period t + 1. The probability

weights of period-t based decisions are combined thusly in order to determine the

weights in gt+1(w): Take, for example, gt+1(w = 1). There are two and only two

ways to get to wt+1 = 1 in a borrowing-constrained model: The first is to consume

everything in period t and receive an income of one at the beginning of period t + 1.

The second is to consume all but one unit in period t and receive no income at the

beginning of period t + 1. Figure 3.10 focuses on the first of these two possibilities
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by summing the probability of all the consumption-wealth combinations that leave

behind zero post-consumption wealth in period t (the solid outline around the main

diagonal), and multiplying that by the probability of receiving one unit of income

in period t + 1. A similar calculation characterizes post-consumption wealth of one

and income of zero (the dotted outline around the first off-diagonal). These two

calculations are then summed to arrive at the total probability of being at wt+1 = 1.

It should be noted that the specific values in the ft matrix of figure 3.10 in no way

represent an optimal choice and are simply for illustrative purposes.

Regarding information concerning the next period’s wealth, note that “. . . the

agent must allow some noise to affect the choice of c in the current period, but can

use the noisy observation that entered determination of c to update beliefs about next

period’s w” [(Sims, 2006, p. 18)]. This is accounted for in equations (3.17) and (3.18)

and clearly reflected in figure 3.10. That is, the restriction on information processing

in the current period constrains decisions regarding consumption, but also effects the

information known about the following period’s wealth. Where attention is focused

by the agent (in the wealth-consumption space) in the current period will have an

impact on the precision of the agent’s wealth distribution in the following period(s).

3.4.6 Parameters and Initial Conditions

In the analysis that follows, the life-cycle is divided into T = 8 periods, where

the agent is employed for six periods and retires in period R = 7. The life-cycle

is assumed to begin during the working portion of life and we assume that it takes
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place during ages 25-80, meaning that a model period is just under seven years and

β = 0.96
55
8 ≈ 0.76. The initial state, g1(w), is assumed to be a flat one-period income

distribution, with the exception that there is no weight placed on the w1 = 0 node.

We want to be able to analyze preferences with higher risk aversion, and therefore

do not want to force agents to absorb zero consumption in the initial state. In future

periods, there can be probability on a per-period income of zero, but agents with

higher-γ values choose never to allow this to become a problem.

The value for N (the number of nodes in the wealth, and therefore also con-

sumption, grid) is determined by the value for K (the number of nodes in the in-

come grid) and the retirement age R in this model. In each period, the income

received adds to potential existing wealth and the maximum possible value of wealth

increases. Therefore, the total size of the wealth and consumption grids is given by

N = (R − 2)(K − 1) + K, and in the figures that follow, K = 9, making N = 49.

3.4.7 The Solution Method

As in Lewis (2007a), this problem is handed over to a numerical optimizer.

The optimization is performed using a combination of programs known as AMPL and

KNITRO. AMPL is a front end for many powerful optimizers, one of which being KNITRO.

By front end we mean the following: Problems are entered into AMPL via a very explicit

system which essentially requires nothing more than copying the objective function in

equation (3.12) as well as the constraints in equations (3.9), (3.10), (3.13)-(3.18) into

a file exactly as they appear above. Once the problem has been described to AMPL it
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performs what is called pre-solve, which looks at the problem and does what it can to

eliminate complexity from a hill-climbing perspective by performing basic exercises

such as solving for equality-constrained variables and so forth. Finally, AMPL performs

what is known as automatic or algorithmic differentiation. The speed and accuracy

of any optimizer depend on the information available about the hill being climbed.

Automatic differentiation (AD) provides the gradients without the truncation errors

of a procedure like divided differencing or the excessive memory usage of symbolic

differentiation. AD is best thought of as a close cousin of symbolic differentiation

in that both are the result of systematic application of the chain rule. However, in

the case of AD, the chain rule is applied not to symbolic expressions but to actual

numerical values.9

Given the specifications for K, R, and N above, the number of free param-

eters (5882, after accounting for adding-up and zero-restriction constraints) seems

very large. Sims had 345 free parameters and needed 11 minutes. However, us-

ing AMPL/KNITRO on his problem [See section 3.2.4.3 above; see Lewis (2007a) for

more detail regarding the numerical optimization issues.] required 1-2 seconds. The

5882-parameter problem of this section requires about 2 minutes. The problem it-

self is straightforward from a numerical optimization standpoint except for the pre-

retirement transition of wealth probabilities, specifically elements pertaining to per-

period income. With the exception of αt, the problem is a very well-posed optimiza-

9For a discussion on this and further exposition of AD, see Griewank (2000) and Rall
(1981). For a discussion specific to its application within AMPL, see Gay (1991).
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Figure 3.11: The Path of the Expectation of Consumption Over the Life-Cycle.

tion problem. The objective is linear, and the constraints would be convex if not

for the effect of α on per-period income (that is, the trade-off variable accounts for

eight of the 5800+ choice variables). Thus, the problem does not appear to be badly

behaved. Several specifications of the model have been tested with dozens of random

starting points for both ft(c, w) and αt, and always within each specification, optima

were identical across starting values.

3.5 Analysis and Results

The addition of uncertainty and information-processing constraints to the

canonical model results in a clear hump-shape in the expected consumption path,

as indicated in figure 3.11. The initial slope of the consumption hump is the result

of “buffer-stock” style savings early in the life-cycle designed to protect again low

wealth states in the future. The downward slope at the end is the result of a struggle
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Figure 3.12: The Expected Path of Consumption for αt = 1, ∀ t, and κM = 10.

between the desire to consume as much as possible in each period and the desire

to avoid a large probability of being left with zero wealth in the final period. This

behavior is the result of unresolvable uncertainty on the part of the agent.

To understand where this hump-shape comes from, we examine the impact

of decreasing the maximum information-processing capacity level, κM . A note about

discounting and returns: in this model the gross rate of return is one making the value

of βR ≈ 0.76. As has been documented in the life-cycle literature [see, e.g. Yaari

(1964)], the path of consumption in the canonical model will only be flat for βR = 1,

while βR > 1 leads to growth and βR < 1 leads to decline. Therefore, when the αt

trade-off is eliminated and the infomation-processing capacity is made very large, we

would expect the consumption path to decay, as indicated in figure 3.12.

As the information-processing constraint is tightened, we see a clear hump-

shape emerge in the expected consumption path, as seen in figure 3.13.
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Figure 3.13: Expected Consumption Path for Decreasing Levels of Information-
Processing Capacity, Given a Fixed αt = 1 for All Time Periods.
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It is important to remember that the agent never has exact knowledge of his

wealth or income. This unresolvable uncertainty due to information-processing con-

straints is what gives rise to the hump. Careful examination of the differences in

the decay of consumption in closing time periods shows that while the unconstrained

model (figure 3.12) has a decrease in consumption, the information-processing con-

straint clearly plays a role in the profile of the decrease (note the change in the profile

of the decrease in panel 3.13(a) compared to figure 3.12).

The downside of the hump is partially created by the fact that the no-processing-

constraint model in which βR < 1 has a natural downward slope. However, we can see

that the both sides of the hump clearly are produced by the information processing

constraints even in the more standard universe of βR = 1, in figure 3.14.

The feature of the model that is important is that information-processing

constraints create both precautionary saving and dis-saving. The agent in the model

is scaling back his or her consumption more dramatically than they would in the event

that they knew their wealth exactly and could control their consumption precisely.

Figure 3.14 demonstrates that this “precautionary dis-savings” generates a downside

to the consumption hump without the aid of the normal consumption decay implied

by βR < 1.

The particular consumption path in figure 3.11 is based on an agent who has

fairly low risk aversion: CRRA utility with γ = 0.5. As would be expected, the

consumption behavior of the agent changes as risk aversion rises, as demonstrated in

figure 3.15: more risk averse agents are more frugal early in life and consume more
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Figure 3.15: The Path of Expected Consumption Over the Life Cycle for Different
Risk Preferences.

in retirement as a result.

From figure 3.16 it is seen that risk aversion changes result in very different

behavior during the “employed” portion of the life cycle. Careful examination of the

first-period marginal distribution of consumption reveals that the more risk averse

agent (γ = 2) chooses to place probability on only the lowest positive consumption

point, regardless of the level of wealth. The other two parameterizations, γ = 0.5 and

γ = 1, spread probability across multiple potential consumption levels. The three

initial consumption strategies summarized in the first panel of figure 3.16 require

different levels of information-processing capacity. While the consumption strategy

of the agent when γ = 0.5 requires some processing capacity (he keeps roughly a

third of his potential capacity), the strategy of comsuming the lowest level possible

requires almost no information-processing capacity, and the γ = 2 agent chooses α1
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γ = 0.5 γ = 2.0

α1 0.3 10−3

Table 3.1: Values of Tradeoff Parameter, α, in the First Period.

accordingly, (see Table 3.1).

Figure 3.17 displays the joint distribution of consumption and wealth in the

first period. Panel 3.17(a) is analogous to previous RI treatments in which the

information-processing capacity of the agent is fixed exogenously. Panel 3.17(b) de-

picts the more general case in which the agent optimally chooses αt. In each figure,

as in the joint distribution figures of section 3.2, darker boxes indicate heavier prob-

ability weight, with the key to the value of the joint pdf given in the legend to the

right of each distribution.

To understand the figure, consider the γ = 2 case in panel 3.17(a). This risk

averse agent is choosing to save in the first period, regardless of wealth level. This is

seen by the solid bar on the lowest positive consumption node, indicating that he is

placing all his probability on consuming at the lowest non-zero level. With lower risk

aversion (γ = 0.5), the agent in panel 3.17(a) chooses to place probability on higher

levels of consumption for higher levels of wealth. For example, the consumption

distribution conditional on the wealth level just above 0.1 places probability on five

possible consumption points, with the majority of the weight being placed on 0.1. It

can be seen in this panel that given lower risk aversion (γ = 0.5), the agent will assign
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positive probability to several consumption points that are on the feasibility boundary.

This is because unlike the higher risk aversion parameterizations, consumption of zero

is not penalized nearly as heavily.

The two panels in figure 3.17 allow analysis of the information-processing

capacity and income tradeoff. By fixing α1 = 1 we can examine how the agent’s

behavior changes when he does not have the ability to trade information-processing

capacity for expected income in period two. By looking at the γ = 2 panels of both

figure 3.17(a) and 3.17(b), we see that the agent does not wish to use any of his

available processing capacity. As a result, when offered the trade of information-

processing capacity (something he does not need) for future income (something he

wants very much), it is obvious that he will give up much of his processing capacity

except for enough to know where the lowest positive consumption node is located.

That is, the choice made by the risk averse agent when α1 = 1 is a choice that requires

almost no information-processing capacity, so two cases are identical.10

The γ = 0.5 parameterization, on the other hand, requires the agent to bal-

ance current processing needs with future income desires. When α1 is fixed, the agent

places weight on consumption possibilities he would not consider when he is offered

the choice of α1. That is, when γ = 0.5, giving the agent the ability to reduce his

processing capacity in exchange for increases in expected future income results in a

10Note that the only mutual information “connection” between c and w implied by the
joint distribution in panel 3.17(a) concerns feasibility of the lowest positive consumption
node. Beyond that, the distribution implies independence, thus the very low mutual infor-
mation content and therefore information-processing requirement.
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change in the behavior of the agent. From Table 3.1, we see that when given the

opportunity, the agent will give up 70% of his information-processing capacity in ex-

change for improvements in his future income. The optimal allocation of “precision”

changes when the total amount of precision to be allocated changes. First, note that

the levels of wealth and their associated probabilities are identical in panels 3.17(a)

and 3.17(b). That is, for example, the probability of w = 0.025 is the same in both

panels. Next, note that the agent assigns probability to consumption possibilities

when α1 is exogenously-fixed at 1 that he ignores when α1 is endogenously set to

0.3. Additionally, note that the probability is placed more heavily on the feasible

boundary when α1 is fixed, and that consumption appears to be more strongly cor-

related with wealth. That is, when α1 is determined endogenously, the probability

mass of consumption at each of the three possibilities is spread more uniformly across

wealth levels when compared to the exogenously-fixed α1 choice. These differences

are all a result of using less information-processing capacity. First, when the amount

of information-processing capacity decreases, the agent can compensate by paying

attention to fewer things. This is accomplished by considering a smaller set of con-

sumption possibilities. By eliminating higher consumption levels, the agent is able to

“spend more” of his information-processing capacity on the remaining three levels.

In addition to this, the remaining consumption-wealth pairings will have less precise

conditional distributions. The problem can be thought of as one of allocating a total

pool of precision, or attention. First, the agent can reduce the number of (c, w) pair-

ings over which he is trying to be precise, and then lower the precision of pairings
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Figure 3.18: The Path of the Choice Variable αt Over Time for Different Risk Pref-
erences.

still to be considered. The mathematics of the problem boil down to how much “cor-

relation” (more precisely mutual information) can be represented in the optimally

chosen joint distribution. As the agent reduces information-processing capacity, the

optimal choice of the joint distribution must imply a weaker relationship between c

and w. It is important to remember that the agent is choosing to give up the in-

formation processing capacity that represents the difference between panels 3.17(a)

and 3.17(b). The information-processing capacity is being traded for future income

prospects, meaning that the agent is acting optimally when he chooses to move from

panel 3.17(a) to 3.17(b).

The optimal path of α is given in figure 3.18. Returning to the higher risk

aversion specification (γ = 2), the amount of information-processing required for the

first period is nearly zero, but the second period makes use of a significant amount.
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This is done for two reasons, the first of which is that it is no longer optimal to

save nearly all income in the second period. The “buffer-stock” accumulation of

the first period gives way to a lower marginal expected savings rate. Second, the

space of potential wealth levels doubles from period 1 to period 2.11 These two

effects combine to make the optimal choice for the high risk aversion parameterization

essentially a coin-flip over two higher levels of consumption than he consider in the

first period (see figure 3.16). It should also be noted that period 2 represents the

period in which the agent places probability on the highest consumption node he will

consider during periods 1-5. This statement must be differentiated from describing

the expected consumption path, which clearly continues to rise in subsequent periods

for the high risk aversion agent. What is meant here is that the agent solves his

attention allocation problem in such as way as to place weight on higher levels of

consumption in period 2 than he did in period 1, and that he does not continue to

consider even higher levels again in period 3. That is, the agent has reached the levels

of consumption sustainable given his lifetime expected income by period 2. The next

few working periods (3-5) are a process of fine-tuning the consumption choice, as seen

by the fact that the γ = 2 parameterization places the majority of the weight on a

single consumption level in periods 3 through 5.

The low risk aversion parameterization (γ = 0.5) also needs more processing

11The agent begins with an initial wealth level equal to a flat one-period income distri-
bution with no weight on zero. When the agent moves to the second period he gets his
K-node period income distribution whose lowest node is zero. As a result, the first period
had K wealth levels while the second period has K + (K − 1) wealth levels.
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power in the second time period due to the increase in the size of the wealth space.

However, when γ = 0.5, the agent’s consumption choices do not need to grow as much

relative to the first period as the higher risk aversion parameterizations, so his need

for information-processing capacity growth is much less sharp. Still, he continues to

use more processing power than his high risk aversion counterpart because he wants

to be able to consider more points than the high risk aversion parameterization.

To explain why the low risk aversion agent wishes to consider a broader range of

consumption nodes than the higher risk aversion agent for a given wealth distribution,

we examine figure 3.19, the joint distributions in period 6 – the period just before

retirement. Before progressing, it must be clearly understood that the α-path for

all parameterizations goes to one for periods 6-8 because of the tradeoff used in the

model. Agents trade information processing capacity for benefits in their next period’s

income distribution. At retirement, the agent stops receiving income, so because there

is no income in period 7 or 8, there is no reason to spend time trying to improve it

in periods 6 and 7 (there is no “future” following period 8, so similarly there is no

incentive to give up any processing capacity). Beginning in the period directly before

retirement, the agent no longer has anything to trade for his processing capacity, and

as a result, the amount of information processed in period six (α6 = 1) is nearly

three times that of previous periods. One aspect of this model is that the agent

anticipates this increase in processing power and is waiting to increase consumption

once it arrives.

To return to the question of how risk aversion impacts the range of consump-
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Figure 3.19: The Choice of the Joint Distribution of Consumption and Wealth in the
Sixth Time Period.

tion levels considered given a wealth distribution, figure 3.19 demonstrates that while

the anticipated explosion of processing power does, in fact, cause agents with each

parameterization to expand their attention considerably, a central difference between

high and low risk aversion can be seen. Low-γ agents spread their attention more

broadly, strategically spacing consumption allocation so that they can cover more of

the consumption-wealth space with some accuracy, while high-γ agents focus more

intently on a smaller number of points, paying special attention to the lower levels

to guarantee precise behavior there. For example, in Sims’s undiscounted two-period

case discussed earlier, given a marginal distribution for wealth, it is clear that the

optimal unconstrained choice would be to choose c = w/2 for every w. It was demon-



www.manaraa.com

123

strated by Sims that, in the information-processing constrained world (his figures 5

and 6), the less risk averse agents will spread their attention over a larger region of the

(c, w) space, discretely, so as to generate adequate consumption over a broader range

of wealth. That is, the consumption conditionals are centered around the c = w/2

optimum but give up tightness around the optimum and careful examination of lower

consumption nodes for the ability to focus attention on consuming at higher levels

when wealth is, in fact, high. The agent has a total amount of “preciseness” that

can be used. He could, for example, be very precise around a few levels of wealth

by forming very tight conditional distributions around ci = wj/2 for several wj’s.

Or, he could be very imprecise around every wj. Where and how the agents wish to

be precise is a function of their preferences. More risk averse agents give up higher

consumption in the high wealth state for the ability to consume more accurately

at lower wealth levels, meaning tighter distributions around the optimum and fewer

gaps in attention overall at lower consumption levels. They do this because they are

concerned about consumption-wealth mismatches at lower wealth levels and want to

be able to consume everything up to their boundary in these cases. Further, they are

willing to pay the price of moderate consumption in high wealth states in order to do

so.

This result, that lower risk aversion agents will spread their attention across

more consumption possibilities, combined with the fact that they reach a sustainable

level of consumption by period 2, accounts for the relatively flat nature of the α-path

for γ = 0.5 in figure 3.18. Similarly, the high risk aversion agent has more spread-out
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Figure 3.20: The Choice of the Joint Distribution of Consumption and Wealth in the
Second Time Period.

consumption behavior in period 2 because by saving heavily in the first period, he

has increased his potential wealth to a point where there is very little probability of a

low wealth state, therefore it does not take a large amount of information-processing

capacity to have tight conditionals at the few wealth levels he considers to be “low.”

(Note the tight conditional distributions for consumption given the lower three wealth

levels in figure 3.20.) Because he is able to behave cautiously at low wealth levels

at a fairly low “attention” cost, he is able to consider a consumption lottery that is

essentially a coin flip over two higher consumption levels.

In exchange for giving up processing capacity, the agent receives the same

thing in each time period: improvement in the next period’s income distribution.
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Therefore, the variations in α must represent variations in the value of information-

processing over time. Just as consumption-smoothing is the optimal result of the

canonical model, there could be informational smoothing in inattention models as

well. Future research will include an examination of differences in the marginal value

of processing capacity that could cause a sort of information smoothing over time that

could explain the type of “over-shooting” observed in the α-path of the log-preferences

agent in figure 3.18.

Figure 3.21 indicates that the wealth distributions are similar across the three

γ specifications. As wealth grows, the distributions spread out and as agents dis-

save, their wealth distributions collapse on a small number of points. When an agent

reaches the point of retirement, he wants to eat from his savings as much as possi-

ble, but there is a struggle between not wanting to leave anything on the table and

not wanting to have a high probability of zero consumption in the final period. As

can be seen in the final pane of figure 3.21, each wealth distribution collapses on a

point, though the point is different for each parameterization. The distance of that

“collapsing point” from the origin and the shape around the point is a function of the

agent’s preferences regarding zero consumption: more highly-risk-averse agents bring

their final wealth distribution to a sharper point than their less cautious counterparts,

and that point is shifted to the right to ensure safety regarding zero-consumption.

The “sharpness” of the final wealth distribution is increasing in γ because of the ef-

fect described earlier regarding how agents allocate their attention. Because of the

focus of the higher risk aversion parameterization on a smaller number of points,
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these agents tend to eliminate probability weight from certain regions in the wealth

distribution while leaving other regions untouched. This behavior is different from

lower risk aversion parameterizations which tend to eliminate some probability from

a large number of nodes rather than all probability from a small number of nodes.

As a result, highest probability weight in the high risk aversion parameterization is

higher than it’s counterpart in the lower risk aversion parameterizations.

As a result of the inability to eliminate uncertainty, we observe in this model

what have been called “accidental bequests” [see e.g. Hendricks (2002)]. These

bequests result not from uncertainty regarding time of death, but from uncertainty

arising from an inability to process all the information available. As is seen in figure

3.22, the expected bequest is increasing in γ. Note that according to figure 3.22, an

agent with CRRA preferences and γ = 2 has a 20% probability of leaving behind

a bequest at least as large as a full period’s consumption (just under seven years’

worth).

3.6 Conclusions

Following the two-period model of Sims (2006), this paper presents a simple

life-cycle framework for addressing the optimal allocation of attention over time. The

framework is fully scalable in a finite-horizon model and could be used to study opti-

mal behavior under processing constraints in more general economic environments. In

the framework studied here, the value of information-processing capacity varies over

time, and the agent’s degree of risk aversion plays a significant role in determining
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Figure 3.21: The Marginal Distributions of Wealth Throughout the Life-Cycle for
Different Levels of γ.
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that value. Life cycle agents with finite information-processing capacity display the

hump-shape pattern of consumption observed so frequently in the data. Addition-

ally, the struggle between wanting to consume as much as possible and wishing to

avoid zero consumption can lead to a high probability that an agent will leave behind

non-trivial wealth at death, thus generating an “accidental bequest” that is solely an

artifact of imprecise knowledge.
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APPENDIX A
AN ALTERNATIVE SOLUTION PROCEDURE FOR THE

TWO-PERIOD PROBLEM

A.1 The Iterative Procedure

It should be noted that there is an alternative solution procedure for this

specific problem. This problem lends itself to a semi-analytical approach based on

iteration on the first-order conditions of the optimization problem. As was noted

earlier, we can assume fi,j > 0 because lim
x→0

x log(x) = 0, and therefore the first-order

conditions for this problem can be written:

Ui,j − λ

[
log(fi,j) − log

(
Nw∑
j=1

fi,j

)]
− ωj = 0 (A.1)

where

Ui,j =
c1−γ
i + (wj − ci)

1−γ

1 − γ
, (A.2)

Specifying a value for λ (the multiplier on (2.5)) is identical to choosing a κ

(as you would expect, different parameterizations result in different λ’s for the same

value of κ). The utility function and λ are known, so elimination of ωj (the multiplier

on (2.3) for a specific j) is all that is required before we are able to solve for the

probabilities. This is done by taking advantage of the log-properties inherited from

the entropic constraint.
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1

λ

(
Ui,j − ωj

)
= log

⎛
⎜⎜⎜⎝ fi,j

Nw∑
j=1

fi,j

⎞
⎟⎟⎟⎠

=⇒ fi,j

Nw∑
j=1

fi,j

= exp [(1/λ)(Ui,j − ωj)] (A.3)

At this point, it should be noted that the denominator of the LHS of (A.3) represents

the marginal probability of ci, which we will call p(ci). Thus,

fi,j = exp [(1/λ)(Ui,j − ωj)] p(ci) =
exp[(1/λ)Ui,j]

exp[ωj/λ]
p(ci). (A.4)

Equation (2.3) yields that:

Nc∑
i=1

fi,j = g(wj) =
1

exp[ωj/λ]

Nc∑
i=1

exp[(1/λ)Ui,j]p(ci)

=⇒ 1

exp[ωj/λ]
=

g(wj)
Nc∑
i=1

exp[(1/λ)Ui,j]p(ci)

. (A.5)

Therefore, we (almost) have a solution for the probabilities:

fi,j =
exp[(1/λ)Ui,j]p(ci)g(wj)

Nc∑
i=1

exp[(1/λ)Ui,j]p(ci)

. (A.6)

Equation (A.6) is the solution, but recall that p(ci) =
∑Nw

j=1 fi,j.
1 The procedure is

completed via iteration on f . Starting with a random f matrix and generating a

1That is, equation (A.6) must hold for all feasible (ci, wj) pairs at the optimum, but
much like value-function iteration, the solution lies in the answer to the question “what
{fi,j} matrix makes (A.6) true?”
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marginal distribution over c by summing, one can use these values to construct the

solutions for {fi,j}, then sum the rows of the f matrix to form the next iteration of

p(c), and continue until subsequent f distributions are arbitrarily close to each other,

giving us {fi,j} values which satisfy (A.6). This procedure appears to converge on

the same distribution for any starting f distribution. Successive iterations are within

10−7 of each other within 60 seconds when done using MATLAB on a 3 GHz Pentium

4 running Windows XP.

This procedure derives identical solutions to the procedure outlined above

using AMPL, and without using sophisticated optimizers. That being said, it is slower

and it cannot be implemented in general. This problem has an undiscounted utility

function and it’s static nature make FOC-based analysis possible.

A.2 Theory vs. Computation

The quasi-analytical approach of this appendix yields an equation for the prob-

ability of consuming ci at wealth level wj driven by exp[(1/λ)Ui,j]. While this theo-

retical result is central to RI theory (the probability is driven by the interaction of

the utility of that (c, w) pair and the processing capacity), this equation represents

a potential numerical pitfall. The problem is one of computer accuracy: when the

absolute value of Ui,j/λ is large for all (i, j) combinations, the theory will predict a

smooth, descriptive function of Ui,j while the computer will return either zero or ∞

for all (ci, wj) pairs (If the utility is negative, zero; if positive, infinite). The low-λ,

high-U problem is purely an artifact of the computer’s inability to deal with very
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large or small numbers, but it is dramatically exacerbated in this exponential sit-

uation.2 The bad news is that exp[(1/λ)Ui,j] is central to RI theory and therefore

present in RI models in general. The good news is that it is easy to identify: utility

and λ values can be determined, and model-designers can plan to work around, or

find model-specific solutions to, the problem.

2The severity of this problem is a function of the software and architecture of the com-
puter being used for the calculations. As computers grow in sophistication, this problem
will be alleviated but never eliminated.
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